diff -r 52771c21d9ca -r 14b9286ed036 HOL.thy --- a/HOL.thy Wed Apr 06 16:31:06 1994 +0200 +++ b/HOL.thy Tue Apr 19 10:50:00 1994 +0200 @@ -103,15 +103,15 @@ (* Definitions *) - True_def "True = ((%x::bool.x)=(%x.x))" - All_def "All = (%P. P = (%x.True))" - Ex_def "Ex = (%P. P(@x.P(x)))" - False_def "False = (!P.P)" - not_def "not = (%P. P-->False)" - and_def "op & = (%P Q. !R. (P-->Q-->R) --> R)" - or_def "op | = (%P Q. !R. (P-->R) --> (Q-->R) --> R)" - Ex1_def "Ex1 = (%P. ? x. P(x) & (! y. P(y) --> y=x))" - Let_def "Let(s, f) = f(s)" + True_def "True == ((%x::bool.x)=(%x.x))" + All_def "All == (%P. P = (%x.True))" + Ex_def "Ex == (%P. P(@x.P(x)))" + False_def "False == (!P.P)" + not_def "not == (%P. P-->False)" + and_def "op & == (%P Q. !R. (P-->Q-->R) --> R)" + or_def "op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)" + Ex1_def "Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x))" + Let_def "Let(s, f) == f(s)" (* Axioms *) @@ -120,10 +120,10 @@ (* Misc Definitions *) - Inv_def "Inv = (%(f::'a=>'b) y. @x. f(x)=y)" - o_def "op o = (%(f::'b=>'c) g (x::'a). f(g(x)))" + Inv_def "Inv == (%(f::'a=>'b) y. @x. f(x)=y)" + o_def "op o == (%(f::'b=>'c) g (x::'a). f(g(x)))" - if_def "if = (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))" + if_def "if == (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))" end