diff -r 3a8d722fd3ff -r 16c4ea954511 Gfp.ML --- a/Gfp.ML Fri Nov 11 10:35:03 1994 +0100 +++ b/Gfp.ML Mon Nov 21 17:50:34 1994 +0100 @@ -15,27 +15,27 @@ val prems = goalw Gfp.thy [gfp_def] "[| X <= f(X) |] ==> X <= gfp(f)"; by (rtac (CollectI RS Union_upper) 1); by (resolve_tac prems 1); -val gfp_upperbound = result(); +qed "gfp_upperbound"; val prems = goalw Gfp.thy [gfp_def] "[| !!u. u <= f(u) ==> u<=X |] ==> gfp(f) <= X"; by (REPEAT (ares_tac ([Union_least]@prems) 1)); by (etac CollectD 1); -val gfp_least = result(); +qed "gfp_least"; val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) <= f(gfp(f))"; by (EVERY1 [rtac gfp_least, rtac subset_trans, atac, rtac (mono RS monoD), rtac gfp_upperbound, atac]); -val gfp_lemma2 = result(); +qed "gfp_lemma2"; val [mono] = goal Gfp.thy "mono(f) ==> f(gfp(f)) <= gfp(f)"; by (EVERY1 [rtac gfp_upperbound, rtac (mono RS monoD), rtac gfp_lemma2, rtac mono]); -val gfp_lemma3 = result(); +qed "gfp_lemma3"; val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) = f(gfp(f))"; by (REPEAT (resolve_tac [equalityI,gfp_lemma2,gfp_lemma3,mono] 1)); -val gfp_Tarski = result(); +qed "gfp_Tarski"; (*** Coinduction rules for greatest fixed points ***) @@ -44,7 +44,7 @@ "[| a: X; X <= f(X) |] ==> a : gfp(f)"; by (rtac (gfp_upperbound RS subsetD) 1); by (REPEAT (ares_tac prems 1)); -val weak_coinduct = result(); +qed "weak_coinduct"; val [prem,mono] = goal Gfp.thy "[| X <= f(X Un gfp(f)); mono(f) |] ==> \ @@ -53,21 +53,21 @@ by (rtac (mono RS gfp_lemma2 RS subset_trans) 1); by (rtac (Un_upper2 RS subset_trans) 1); by (rtac (mono RS mono_Un) 1); -val coinduct_lemma = result(); +qed "coinduct_lemma"; (*strong version, thanks to Coen & Frost*) goal Gfp.thy "!!X. [| mono(f); a: X; X <= f(X Un gfp(f)) |] ==> a : gfp(f)"; by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1); by (REPEAT (ares_tac [UnI1, Un_least] 1)); -val coinduct = result(); +qed "coinduct"; val [mono,prem] = goal Gfp.thy "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))"; br (mono RS mono_Un RS subsetD) 1; br (mono RS gfp_lemma2 RS subsetD RS UnI2) 1; by (rtac prem 1); -val gfp_fun_UnI2 = result(); +qed "gfp_fun_UnI2"; (*** Even Stronger version of coinduct [by Martin Coen] - instead of the condition X <= f(X) @@ -75,7 +75,7 @@ val [prem] = goal Gfp.thy "mono(f) ==> mono(%x.f(x) Un X Un B)"; by (REPEAT (ares_tac [subset_refl, monoI, Un_mono, prem RS monoD] 1)); -val coinduct3_mono_lemma= result(); +qed "coinduct3_mono_lemma"; val [prem,mono] = goal Gfp.thy "[| X <= f(lfp(%x.f(x) Un X Un gfp(f))); mono(f) |] ==> \ @@ -89,7 +89,7 @@ by (rtac (mono RS monoD) 1); by (rtac (mono RS coinduct3_mono_lemma RS lfp_Tarski RS ssubst) 1); by (rtac Un_upper2 1); -val coinduct3_lemma = result(); +qed "coinduct3_lemma"; val prems = goal Gfp.thy "[| mono(f); a:X; X <= f(lfp(%x.f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"; @@ -97,7 +97,7 @@ by (resolve_tac (prems RL [coinduct3_mono_lemma RS lfp_Tarski RS ssubst]) 1); by (rtac (UnI2 RS UnI1) 1); by (REPEAT (resolve_tac prems 1)); -val coinduct3 = result(); +qed "coinduct3"; (** Definition forms of gfp_Tarski and coinduct, to control unfolding **) @@ -105,13 +105,13 @@ val [rew,mono] = goal Gfp.thy "[| A==gfp(f); mono(f) |] ==> A = f(A)"; by (rewtac rew); by (rtac (mono RS gfp_Tarski) 1); -val def_gfp_Tarski = result(); +qed "def_gfp_Tarski"; val rew::prems = goal Gfp.thy "[| A==gfp(f); mono(f); a:X; X <= f(X Un A) |] ==> a: A"; by (rewtac rew); by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct]) 1)); -val def_coinduct = result(); +qed "def_coinduct"; (*The version used in the induction/coinduction package*) val prems = goal Gfp.thy @@ -120,13 +120,13 @@ \ a : A"; by (rtac def_coinduct 1); by (REPEAT (ares_tac (prems @ [subsetI,CollectI]) 1)); -val def_Collect_coinduct = result(); +qed "def_Collect_coinduct"; val rew::prems = goal Gfp.thy "[| A==gfp(f); mono(f); a:X; X <= f(lfp(%x.f(x) Un X Un A)) |] ==> a: A"; by (rewtac rew); by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct3]) 1)); -val def_coinduct3 = result(); +qed "def_coinduct3"; (*Monotonicity of gfp!*) val prems = goal Gfp.thy @@ -142,4 +142,4 @@ val [prem] = goal Gfp.thy "[| !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"; br (gfp_upperbound RS gfp_least) 1; be (prem RSN (2,subset_trans)) 1; -val gfp_mono = result(); +qed "gfp_mono";