diff -r 3a8d722fd3ff -r 16c4ea954511 Prod.ML
--- a/Prod.ML Fri Nov 11 10:35:03 1994 +0100
+++ b/Prod.ML Mon Nov 21 17:50:34 1994 +0100
@@ -11,52 +11,52 @@
(*This counts as a non-emptiness result for admitting 'a * 'b as a type*)
goalw Prod.thy [Prod_def] "Pair_Rep(a,b) : Prod";
by (EVERY1 [rtac CollectI, rtac exI, rtac exI, rtac refl]);
-val ProdI = result();
+qed "ProdI";
val [major] = goalw Prod.thy [Pair_Rep_def]
"Pair_Rep(a, b) = Pair_Rep(a',b') ==> a=a' & b=b'";
by (EVERY1 [rtac (major RS fun_cong RS fun_cong RS subst),
rtac conjI, rtac refl, rtac refl]);
-val Pair_Rep_inject = result();
+qed "Pair_Rep_inject";
goal Prod.thy "inj_onto(Abs_Prod,Prod)";
by (rtac inj_onto_inverseI 1);
by (etac Abs_Prod_inverse 1);
-val inj_onto_Abs_Prod = result();
+qed "inj_onto_Abs_Prod";
val prems = goalw Prod.thy [Pair_def]
"[| = ; [| a=a'; b=b' |] ==> R |] ==> R";
by (rtac (inj_onto_Abs_Prod RS inj_ontoD RS Pair_Rep_inject RS conjE) 1);
by (REPEAT (ares_tac (prems@[ProdI]) 1));
-val Pair_inject = result();
+qed "Pair_inject";
goal Prod.thy "( = ) = (a=a' & b=b')";
by (fast_tac (set_cs addIs [Pair_inject]) 1);
-val Pair_eq = result();
+qed "Pair_eq";
goalw Prod.thy [fst_def] "fst() = a";
by (fast_tac (set_cs addIs [select_equality] addSEs [Pair_inject]) 1);
-val fst_conv = result();
+qed "fst_conv";
goalw Prod.thy [snd_def] "snd() = b";
by (fast_tac (set_cs addIs [select_equality] addSEs [Pair_inject]) 1);
-val snd_conv = result();
+qed "snd_conv";
goalw Prod.thy [Pair_def] "? x y. p = ";
by (rtac (rewrite_rule [Prod_def] Rep_Prod RS CollectE) 1);
by (EVERY1[etac exE, etac exE, rtac exI, rtac exI,
rtac (Rep_Prod_inverse RS sym RS trans), etac arg_cong]);
-val PairE_lemma = result();
+qed "PairE_lemma";
val [prem] = goal Prod.thy "[| !!x y. p = ==> Q |] ==> Q";
by (rtac (PairE_lemma RS exE) 1);
by (REPEAT (eresolve_tac [prem,exE] 1));
-val PairE = result();
+qed "PairE";
goalw Prod.thy [split_def] "split(c, ) = c(a,b)";
by (sstac [fst_conv, snd_conv] 1);
by (rtac refl 1);
-val split = result();
+qed "split";
val pair_ss = set_ss addsimps [fst_conv, snd_conv, split, Pair_eq];
@@ -64,7 +64,7 @@
by (res_inst_tac[("p","s")] PairE 1);
by (res_inst_tac[("p","t")] PairE 1);
by (asm_simp_tac pair_ss 1);
-val Pair_fst_snd_eq = result();
+qed "Pair_fst_snd_eq";
(*Prevents simplification of c: much faster*)
val split_weak_cong = prove_goal Prod.thy
@@ -74,19 +74,19 @@
goal Prod.thy "p = ";
by (res_inst_tac [("p","p")] PairE 1);
by (asm_simp_tac pair_ss 1);
-val surjective_pairing = result();
+qed "surjective_pairing";
goal Prod.thy "p = split(%x y., p)";
by (res_inst_tac [("p","p")] PairE 1);
by (asm_simp_tac pair_ss 1);
-val surjective_pairing2 = result();
+qed "surjective_pairing2";
(*For use with split_tac and the simplifier*)
goal Prod.thy "R(split(c,p)) = (! x y. p = --> R(c(x,y)))";
by (stac surjective_pairing 1);
by (stac split 1);
by (fast_tac (HOL_cs addSEs [Pair_inject]) 1);
-val expand_split = result();
+qed "expand_split";
(** split used as a logical connective or set former **)
@@ -95,50 +95,50 @@
goal Prod.thy "!!a b c. c(a,b) ==> split(c, )";
by (asm_simp_tac pair_ss 1);
-val splitI = result();
+qed "splitI";
val prems = goalw Prod.thy [split_def]
"[| split(c,p); !!x y. [| p = ; c(x,y) |] ==> Q |] ==> Q";
by (REPEAT (resolve_tac (prems@[surjective_pairing]) 1));
-val splitE = result();
+qed "splitE";
goal Prod.thy "!!R a b. split(R,) ==> R(a,b)";
by (etac (split RS iffD1) 1);
-val splitD = result();
+qed "splitD";
goal Prod.thy "!!a b c. z: c(a,b) ==> z: split(c, )";
by (asm_simp_tac pair_ss 1);
-val mem_splitI = result();
+qed "mem_splitI";
val prems = goalw Prod.thy [split_def]
"[| z: split(c,p); !!x y. [| p = ; z: c(x,y) |] ==> Q |] ==> Q";
by (REPEAT (resolve_tac (prems@[surjective_pairing]) 1));
-val mem_splitE = result();
+qed "mem_splitE";
(*** prod_fun -- action of the product functor upon functions ***)
goalw Prod.thy [prod_fun_def] "prod_fun(f,g,) = ";
by (rtac split 1);
-val prod_fun = result();
+qed "prod_fun";
goal Prod.thy
"prod_fun(f1 o f2, g1 o g2) = (prod_fun(f1,g1) o prod_fun(f2,g2))";
by (rtac ext 1);
by (res_inst_tac [("p","x")] PairE 1);
by (asm_simp_tac (pair_ss addsimps [prod_fun,o_def]) 1);
-val prod_fun_compose = result();
+qed "prod_fun_compose";
goal Prod.thy "prod_fun(%x.x, %y.y) = (%z.z)";
by (rtac ext 1);
by (res_inst_tac [("p","z")] PairE 1);
by (asm_simp_tac (pair_ss addsimps [prod_fun]) 1);
-val prod_fun_ident = result();
+qed "prod_fun_ident";
val prems = goal Prod.thy ":r ==> : prod_fun(f,g)``r";
by (rtac image_eqI 1);
by (rtac (prod_fun RS sym) 1);
by (resolve_tac prems 1);
-val prod_fun_imageI = result();
+qed "prod_fun_imageI";
val major::prems = goal Prod.thy
"[| c: prod_fun(f,g)``r; !!x y. [| c=; :r |] ==> P \
@@ -148,7 +148,7 @@
by (resolve_tac prems 1);
by (fast_tac HOL_cs 2);
by (fast_tac (HOL_cs addIs [prod_fun]) 1);
-val prod_fun_imageE = result();
+qed "prod_fun_imageE";
(*** Disjoint union of a family of sets - Sigma ***)
@@ -192,7 +192,7 @@
by (rtac bexI 1);
by (rtac (fst_conv RS sym) 1);
by (resolve_tac prems 1);
-val fst_imageI = result();
+qed "fst_imageI";
val major::prems = goal Prod.thy
"[| a : fst``r; !!y.[| : r |] ==> P |] ==> P";
@@ -201,7 +201,7 @@
by (etac ssubst 1);
by (rtac (surjective_pairing RS subst) 1);
by (assume_tac 1);
-val fst_imageE = result();
+qed "fst_imageE";
(*** Range of a relation ***)
@@ -210,7 +210,7 @@
by (rtac bexI 1);
by (rtac (snd_conv RS sym) 1);
by (resolve_tac prems 1);
-val snd_imageI = result();
+qed "snd_imageI";
val major::prems = goal Prod.thy
"[| a : snd``r; !!y.[| : r |] ==> P |] ==> P";
@@ -219,7 +219,7 @@
by (etac ssubst 1);
by (rtac (surjective_pairing RS subst) 1);
by (assume_tac 1);
-val snd_imageE = result();
+qed "snd_imageE";
(** Exhaustion rule for unit -- a degenerate form of induction **)
@@ -227,7 +227,7 @@
"u = Unity";
by (stac (rewrite_rule [Unit_def] Rep_Unit RS CollectD RS sym) 1);
by (rtac (Rep_Unit_inverse RS sym) 1);
-val unit_eq = result();
+qed "unit_eq";
val prod_cs = set_cs addSIs [SigmaI, mem_splitI]
addIs [fst_imageI, snd_imageI, prod_fun_imageI]