diff -r 3a8d722fd3ff -r 16c4ea954511 ex/Puzzle.ML --- a/ex/Puzzle.ML Fri Nov 11 10:35:03 1994 +0100 +++ b/ex/Puzzle.ML Mon Nov 21 17:50:34 1994 +0100 @@ -11,7 +11,7 @@ (*specialized form of induction needed below*) val prems = goal Nat.thy "[| P(0); !!n. P(Suc(n)) |] ==> !n.P(n)"; by (EVERY1 [rtac (nat_induct RS allI), resolve_tac prems, resolve_tac prems]); -val nat_exh = result(); +qed "nat_exh"; goal Puzzle.thy "! n. k=f(n) --> n <= f(n)"; by (res_inst_tac [("n","k")] less_induct 1); @@ -23,33 +23,33 @@ by (subgoal_tac "f(na) <= f(f(na))" 1); by (best_tac (HOL_cs addIs [lessD,Puzzle.f_ax,le_less_trans,le_trans]) 1); by (fast_tac (HOL_cs addIs [Puzzle.f_ax]) 1); -val lemma = result() RS spec RS mp; +val lemma = store_thm("lemma", result() RS spec RS mp); goal Puzzle.thy "n <= f(n)"; by (fast_tac (HOL_cs addIs [lemma]) 1); -val lemma1 = result(); +qed "lemma1"; goal Puzzle.thy "f(n) < f(Suc(n))"; by (fast_tac (HOL_cs addIs [Puzzle.f_ax,le_less_trans,lemma1]) 1); -val lemma2 = result(); +qed "lemma2"; val prems = goal Puzzle.thy "(!!n.f(n) <= f(Suc(n))) ==> m f(m) <= f(n)"; by (res_inst_tac[("n","n")]nat_induct 1); by (simp_tac nat_ss 1); by (simp_tac nat_ss 1); by (fast_tac (HOL_cs addIs (le_trans::prems)) 1); -val mono_lemma1 = result() RS mp; +val mono_lemma1 = store_thm("mono_lemma1", result() RS mp); val [p1,p2] = goal Puzzle.thy "[| !! n. f(n)<=f(Suc(n)); m<=n |] ==> f(m) <= f(n)"; by (rtac (p2 RS le_imp_less_or_eq RS disjE) 1); by (etac (p1 RS mono_lemma1) 1); by (fast_tac (HOL_cs addIs [le_refl]) 1); -val mono_lemma = result(); +qed "mono_lemma"; val prems = goal Puzzle.thy "m <= n ==> f(m) <= f(n)"; by (fast_tac (HOL_cs addIs ([mono_lemma,less_imp_le,lemma2]@prems)) 1); -val f_mono = result(); +qed "f_mono"; goal Puzzle.thy "f(n) = n"; by (rtac le_anti_sym 1);