diff -r 5f99df1e26c4 -r 18d44ab74672 ex/PL.thy --- a/ex/PL.thy Sat Aug 13 16:33:53 1994 +0200 +++ b/ex/PL.thy Sat Aug 13 16:34:30 1994 +0200 @@ -14,34 +14,36 @@ ruleMP,thms :: "'a pl set => 'a pl set" "|-" :: "['a pl set, 'a pl] => bool" (infixl 50) "|=" :: "['a pl set, 'a pl] => bool" (infixl 50) - pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" + eval2 :: "['a pl, 'a set] => bool" eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) hyps :: "['a pl, 'a set] => 'a pl set" rules (** Proof theory for propositional logic **) - axK_def "axK == {x . ? p q. x = p->q->p}" - axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" - axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" + axK_def "axK == {x . ? p q. x = p->q->p}" + axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" + axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" - (*the use of subsets simplifies the proof of monotonicity*) - ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" + (*the use of subsets simplifies the proof of monotonicity*) + ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" - thms_def + thms_def "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))" - conseq_def "H |- p == p : thms(H)" + conseq_def "H |- p == p : thms(H)" - sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" + sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" - pl_rec_var "pl_rec(#v,f,y,z) = f(v)" - pl_rec_false "pl_rec(false,f,y,z) = y" - pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" + eval_def "tt[p] == eval2(p,tt)" +primrec eval2 pl + eval2_false "eval2(false) = (%x.False)" + eval2_var "eval2(#v) = (%tt.v:tt)" + eval2_imp "eval2(p->q) = (%tt.eval2(p,tt)-->eval2(q,tt))" - eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" - - hyps_def - "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, #a->false)}, {}, op Un)" +primrec hyps pl + hyps_false "hyps(false) = (%tt.{})" + hyps_var "hyps(#v) = (%tt.{if(v:tt, #v, #v->false)})" + hyps_imp "hyps(p->q) = (%tt.hyps(p,tt) Un hyps(q,tt))" end