diff -r d9096849bd8e -r 385d51d74f71 ex/PL.ML --- a/ex/PL.ML Tue Mar 22 08:26:25 1994 +0100 +++ b/ex/PL.ML Tue Mar 22 08:28:31 1994 +0100 @@ -1,10 +1,9 @@ -(* Title: HOL/ex/prop-log.ML +(* Title: HOL/ex/pl.ML ID: $Id$ Author: Tobias Nipkow & Lawrence C Paulson - Copyright 1993 TU Muenchen & University of Cambridge + Copyright 1994 TU Muenchen & University of Cambridge -For ex/prop-log.thy. Inductive definition of propositional logic. -Soundness and completeness w.r.t. truth-tables. +Soundness and completeness of propositional logic w.r.t. truth-tables. Prove: If H|=p then G|=p where G:Fin(H) *) @@ -136,7 +135,8 @@ (** The function eval **) -val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp]; +val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp] + @ PL0.inject @ PL0.ineq; goalw PL.thy [eval_def] "tt[false] = False"; by (simp_tac pl_ss 1); @@ -213,8 +213,7 @@ (*This formulation is required for strong induction hypotheses*) goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)"; by (rtac (expand_if RS iffD2) 1); -by(res_inst_tac[("x","p")]spec 1); -by (rtac pl_ind 1); +by(PL0.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H]))); by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2, weaken_right, imp_false] @@ -250,25 +249,24 @@ (*For the case hyps(p,t)-insert(#v,Y) |- p; we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *) -goal PL.thy "!p.hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; +by (PL0.induct_tac "p" 1); by (simp_tac pl_ss 1); by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); -by (fast_tac (set_cs addSEs [sym RS var_neq_imp] addSDs [var_inject]) 1); by (simp_tac pl_ss 1); by (fast_tac set_cs 1); -val hyps_Diff = result() RS spec; +val hyps_Diff = result(); (*For the case hyps(p,t)-insert(#v -> false,Y) |- p; we also have hyps(p,t)-{(#v)->false} <= hyps(p, insert(v,t)) *) -goal PL.thy "!p.hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; +by (PL0.induct_tac "p" 1); by (simp_tac pl_ss 1); -by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); -by (fast_tac (set_cs addSEs [var_neq_imp, imp_inject] addSDs [var_inject]) 1); +by (simp_tac (pl_ss addsimps [insert_subset] + setloop (split_tac [expand_if])) 1); by (simp_tac pl_ss 1); by (fast_tac set_cs 1); -val hyps_insert = result() RS spec; +val hyps_insert = result(); (** Two lemmas for use with weaken_left **) @@ -282,11 +280,11 @@ (*The set hyps(p,t) is finite, and elements have the form #v or #v->false; could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*) -goal PL.thy "!p.hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; +by (PL0.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN' fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI]))); -val hyps_finite = result() RS spec; +val hyps_finite = result(); val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left; @@ -341,4 +339,3 @@ writeln"Reached end of file."; -