diff -r d9096849bd8e -r 385d51d74f71 ex/PL.thy --- a/ex/PL.thy Tue Mar 22 08:26:25 1994 +0100 +++ b/ex/PL.thy Tue Mar 22 08:28:31 1994 +0100 @@ -1,24 +1,18 @@ -(* Title: HOL/ex/prop-log +(* Title: HOL/ex/pl.thy ID: $Id$ Author: Tobias Nipkow - Copyright 1991 University of Cambridge + Copyright 1994 TU Muenchen Inductive definition of propositional logic. - *) -PL = Finite + -types pl 1 -arities pl :: (term)term +PL = Finite + PL0 + consts - false :: "'a pl" - "->" :: "['a pl,'a pl] => 'a pl" (infixr 90) - var :: "'a => 'a pl" ("#_") - pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" axK,axS,axDN:: "'a pl set" ruleMP,thms :: "'a pl set => 'a pl set" "|-" :: "['a pl set, 'a pl] => bool" (infixl 50) "|=" :: "['a pl set, 'a pl] => bool" (infixl 50) + pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) hyps :: "['a pl, 'a set] => 'a pl set" rules @@ -39,17 +33,13 @@ sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" -pl_rec_var "pl_rec(#v,f,y,z) = f(v)" -pl_rec_false "pl_rec(false,f,y,z) = y" -pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" - -eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" + pl_rec_var "pl_rec(#v,f,y,z) = f(v)" + pl_rec_false "pl_rec(false,f,y,z) = y" + pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" -hyps_def - "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" + eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" -var_inject "(#v = #w) ==> v = w" -imp_inject "[| (p -> q) = (p' -> q'); [| p = p'; q = q' |] ==> R |] ==> R" -var_neq_imp "(#v = (p -> q)) ==> R" -pl_ind "[| P(false); !!v. P(#v); !!p q. P(p)-->P(q)-->P(p->q)|] ==> !t.P(t)" + hyps_def + "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" + end