diff -r c3913a79b6ae -r 492493334e0f Univ.thy --- a/Univ.thy Fri Apr 14 11:23:33 1995 +0200 +++ b/Univ.thy Wed Jun 21 15:12:40 1995 +0200 @@ -45,10 +45,10 @@ Case :: "[['a item]=>'b, ['a item]=>'b, 'a item] => 'b" diag :: "'a set => ('a * 'a)set" - "<**>" :: "[('a item * 'a item)set, ('a item * 'a item)set] \ -\ => ('a item * 'a item)set" (infixr 80) - "<++>" :: "[('a item * 'a item)set, ('a item * 'a item)set] \ -\ => ('a item * 'a item)set" (infixr 70) + "<**>" :: "[('a item * 'a item)set, ('a item * 'a item)set] + => ('a item * 'a item)set" (infixr 80) + "<++>" :: "[('a item * 'a item)set, ('a item * 'a item)set] + => ('a item * 'a item)set" (infixr 70) defs @@ -86,18 +86,18 @@ (*the corresponding eliminators*) Split_def "Split(c,M) == @u. ? x y. M = x$y & u = c(x,y)" - Case_def "Case(c,d,M) == @u. (? x . M = In0(x) & u = c(x)) \ -\ | (? y . M = In1(y) & u = d(y))" + Case_def "Case(c,d,M) == @u. (? x . M = In0(x) & u = c(x)) + | (? y . M = In1(y) & u = d(y))" (** diagonal sets and equality for the "universe" **) diag_def "diag(A) == UN x:A. {}" - dprod_def "r<**>s == UN u:r. split(%x x'. \ -\ UN v:s. split(%y y'. {}, v), u)" + dprod_def "r<**>s == UN u:r. split(%x x'. + UN v:s. split(%y y'. {}, v), u)" - dsum_def "r<++>s == (UN u:r. split(%x x'. {}, u)) Un \ -\ (UN v:s. split(%y y'. {}, v))" + dsum_def "r<++>s == (UN u:r. split(%x x'. {}, u)) Un + (UN v:s. split(%y y'. {}, v))" end