diff -r 000000000000 -r 7949f97df77a Prod.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Prod.thy Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,66 @@ +(* Title: HOL/prod + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +Ordered Pairs and the Cartesian product type +The unit type + +The type definition admits the following unused axiom: + Abs_Unit_inverse "f: Unit ==> Rep_Unit(Abs_Unit(f)) = f" +*) + +Prod = Set + +types + "*" 2 (infixr 20) + unit 0 +arities + "*" :: (term,term)term + unit :: term +consts + Pair_Rep :: "['a,'b] => ['a,'b] => bool" + Prod :: "('a => 'b => bool)set" + Rep_Prod :: "'a * 'b => ('a => 'b => bool)" + Abs_Prod :: "('a => 'b => bool) => 'a * 'b" + fst :: "'a * 'b => 'a" + snd :: "'a * 'b => 'b" + split :: "['a * 'b, ['a,'b]=>'c] => 'c" + prod_fun :: "['a=>'b, 'c=>'d, 'a*'c] => 'b*'d" + Pair :: "['a,'b] => 'a * 'b" + "@Tuple" :: "args => 'a*'b" ("(1<_>)") + Sigma :: "['a set, 'a => 'b set] => ('a*'b)set" + + Unit :: "bool set" + Rep_Unit :: "unit => bool" + Abs_Unit :: "bool => unit" + Unity :: "unit" ("<>") + +translations + + "" == ">" + "" == "Pair(x,y)" + "" => "x" + +rules + + Pair_Rep_def "Pair_Rep == (%a b. %x y. x=a & y=b)" + Prod_def "Prod == {f. ? a b. f = Pair_Rep(a,b)}" + (*faking a type definition...*) + Rep_Prod "Rep_Prod(p): Prod" + Rep_Prod_inverse "Abs_Prod(Rep_Prod(p)) = p" + Abs_Prod_inverse "f: Prod ==> Rep_Prod(Abs_Prod(f)) = f" + (*defining the abstract constants*) + Pair_def "Pair(a,b) == Abs_Prod(Pair_Rep(a,b))" + fst_def "fst(p) == @a. ? b. p = " + snd_def "snd(p) == @b. ? a. p = " + split_def "split(p,c) == c(fst(p),snd(p))" + prod_fun_def "prod_fun(f,g) == (%z.split(z, %x y.))" + Sigma_def "Sigma(A,B) == UN x:A. UN y:B(x). {}" + + Unit_def "Unit == {p. p=True}" + (*faking a type definition...*) + Rep_Unit "Rep_Unit(u): Unit" + Rep_Unit_inverse "Abs_Unit(Rep_Unit(u)) = u" + (*defining the abstract constants*) + Unity_def "Unity == Abs_Unit(True)" +end