diff -r 000000000000 -r 7949f97df77a Trancl.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Trancl.ML Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,240 @@ +(* Title: HOL/trancl + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +For trancl.thy. Theorems about the transitive closure of a relation +*) + +open Trancl; + +(** Natural deduction for trans(r) **) + +val prems = goalw Trancl.thy [trans_def] + "(!! x y z. [| :r; :r |] ==> :r) ==> trans(r)"; +by (REPEAT (ares_tac (prems@[allI,impI]) 1)); +val transI = result(); + +val major::prems = goalw Trancl.thy [trans_def] + "[| trans(r); :r; :r |] ==> :r"; +by (cut_facts_tac [major] 1); +by (fast_tac (HOL_cs addIs prems) 1); +val transD = result(); + +(** Identity relation **) + +goalw Trancl.thy [id_def] " : id"; +by (rtac CollectI 1); +by (rtac exI 1); +by (rtac refl 1); +val idI = result(); + +val major::prems = goalw Trancl.thy [id_def] + "[| p: id; !!x.[| p = |] ==> P \ +\ |] ==> P"; +by (rtac (major RS CollectE) 1); +by (etac exE 1); +by (eresolve_tac prems 1); +val idE = result(); + +(** Composition of two relations **) + +val prems = goalw Trancl.thy [comp_def] + "[| :s; :r |] ==> : r O s"; +by (fast_tac (set_cs addIs prems) 1); +val compI = result(); + +(*proof requires higher-level assumptions or a delaying of hyp_subst_tac*) +val prems = goalw Trancl.thy [comp_def] + "[| xz : r O s; \ +\ !!x y z. [| xz = ; :s; :r |] ==> P \ +\ |] ==> P"; +by (cut_facts_tac prems 1); +by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1)); +val compE = result(); + +val prems = goal Trancl.thy + "[| : r O s; \ +\ !!y. [| :s; :r |] ==> P \ +\ |] ==> P"; +by (rtac compE 1); +by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1)); +val compEpair = result(); + +val comp_cs = set_cs addIs [compI,idI] + addSEs [compE,idE,Pair_inject]; + +val prems = goal Trancl.thy + "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"; +by (cut_facts_tac prems 1); +by (fast_tac comp_cs 1); +val comp_mono = result(); + +val prems = goal Trancl.thy + "[| s <= Sigma(A,%x.B); r <= Sigma(B,%x.C) |] ==> \ +\ (r O s) <= Sigma(A,%x.C)"; +by (cut_facts_tac prems 1); +by (fast_tac (comp_cs addIs [SigmaI] addSEs [SigmaE2]) 1); +val comp_subset_Sigma = result(); + + +(** The relation rtrancl **) + +goal Trancl.thy "mono(%s. id Un (r O s))"; +by (rtac monoI 1); +by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1)); +val rtrancl_fun_mono = result(); + +val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski); + +(*Reflexivity of rtrancl*) +goal Trancl.thy " : r^*"; +by (stac rtrancl_unfold 1); +by (fast_tac comp_cs 1); +val rtrancl_refl = result(); + +(*Closure under composition with r*) +val prems = goal Trancl.thy + "[| : r^*; : r |] ==> : r^*"; +by (stac rtrancl_unfold 1); +by (fast_tac (comp_cs addIs prems) 1); +val rtrancl_into_rtrancl = result(); + +(*rtrancl of r contains r*) +val [prem] = goal Trancl.thy "[| : r |] ==> : r^*"; +by (rtac (rtrancl_refl RS rtrancl_into_rtrancl) 1); +by (rtac prem 1); +val r_into_rtrancl = result(); + +(*monotonicity of rtrancl*) +goalw Trancl.thy [rtrancl_def] "!!r s. r <= s ==> r^* <= s^*"; +by(REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1)); +val rtrancl_mono = result(); + +(** standard induction rule **) + +val major::prems = goal Trancl.thy + "[| : r^*; \ +\ !!x. P(); \ +\ !!x y z.[| P(); : r^*; : r |] ==> P() |] \ +\ ==> P()"; +by (rtac (major RS (rtrancl_def RS def_induct)) 1); +by (rtac rtrancl_fun_mono 1); +by (fast_tac (comp_cs addIs prems) 1); +val rtrancl_full_induct = result(); + +(*nice induction rule*) +val major::prems = goal Trancl.thy + "[| : r^*; \ +\ P(a); \ +\ !!y z.[| : r^*; : r; P(y) |] ==> P(z) |] \ +\ ==> P(b)"; +(*by induction on this formula*) +by (subgoal_tac "! y. = --> P(y)" 1); +(*now solve first subgoal: this formula is sufficient*) +by (fast_tac HOL_cs 1); +(*now do the induction*) +by (resolve_tac [major RS rtrancl_full_induct] 1); +by (fast_tac (comp_cs addIs prems) 1); +by (fast_tac (comp_cs addIs prems) 1); +val rtrancl_induct = result(); + +(*transitivity of transitive closure!! -- by induction.*) +goal Trancl.thy "trans(r^*)"; +by (rtac transI 1); +by (res_inst_tac [("b","z")] rtrancl_induct 1); +by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1)); +val trans_rtrancl = result(); + +(*elimination of rtrancl -- by induction on a special formula*) +val major::prems = goal Trancl.thy + "[| : r^*; (a = b) ==> P; \ +\ !!y.[| : r^*; : r |] ==> P \ +\ |] ==> P"; +by (subgoal_tac "a::'a = b | (? y. : r^* & : r)" 1); +by (rtac (major RS rtrancl_induct) 2); +by (fast_tac (set_cs addIs prems) 2); +by (fast_tac (set_cs addIs prems) 2); +by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1)); +val rtranclE = result(); + + +(**** The relation trancl ****) + +(** Conversions between trancl and rtrancl **) + +val [major] = goalw Trancl.thy [trancl_def] + " : r^+ ==> : r^*"; +by (resolve_tac [major RS compEpair] 1); +by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1)); +val trancl_into_rtrancl = result(); + +(*r^+ contains r*) +val [prem] = goalw Trancl.thy [trancl_def] + "[| : r |] ==> : r^+"; +by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1)); +val r_into_trancl = result(); + +(*intro rule by definition: from rtrancl and r*) +val prems = goalw Trancl.thy [trancl_def] + "[| : r^*; : r |] ==> : r^+"; +by (REPEAT (resolve_tac ([compI]@prems) 1)); +val rtrancl_into_trancl1 = result(); + +(*intro rule from r and rtrancl*) +val prems = goal Trancl.thy + "[| : r; : r^* |] ==> : r^+"; +by (resolve_tac (prems RL [rtranclE]) 1); +by (etac subst 1); +by (resolve_tac (prems RL [r_into_trancl]) 1); +by (rtac (trans_rtrancl RS transD RS rtrancl_into_trancl1) 1); +by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1)); +val rtrancl_into_trancl2 = result(); + +(*elimination of r^+ -- NOT an induction rule*) +val major::prems = goal Trancl.thy + "[| : r^+; \ +\ : r ==> P; \ +\ !!y.[| : r^+; : r |] ==> P \ +\ |] ==> P"; +by (subgoal_tac " : r | (? y. : r^+ & : r)" 1); +by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1)); +by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1); +by (etac rtranclE 1); +by (fast_tac comp_cs 1); +by (fast_tac (comp_cs addSIs [rtrancl_into_trancl1]) 1); +val tranclE = result(); + +(*Transitivity of r^+. + Proved by unfolding since it uses transitivity of rtrancl. *) +goalw Trancl.thy [trancl_def] "trans(r^+)"; +by (rtac transI 1); +by (REPEAT (etac compEpair 1)); +by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1); +by (REPEAT (assume_tac 1)); +val trans_trancl = result(); + +val prems = goal Trancl.thy + "[| : r; : r^+ |] ==> : r^+"; +by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1); +by (resolve_tac prems 1); +by (resolve_tac prems 1); +val trancl_into_trancl2 = result(); + + +val major::prems = goal Trancl.thy + "[| : r^*; r <= Sigma(A,%x.A) |] ==> a=b | a:A"; +by (cut_facts_tac prems 1); +by (rtac (major RS rtrancl_induct) 1); +by (rtac (refl RS disjI1) 1); +by (fast_tac (comp_cs addSEs [SigmaE2]) 1); +val trancl_subset_Sigma_lemma = result(); + +val prems = goalw Trancl.thy [trancl_def] + "r <= Sigma(A,%x.A) ==> trancl(r) <= Sigma(A,%x.A)"; +by (cut_facts_tac prems 1); +by (fast_tac (comp_cs addIs [SigmaI] + addSDs [trancl_subset_Sigma_lemma] + addSEs [SigmaE2]) 1); +val trancl_subset_Sigma = result(); +