diff -r 000000000000 -r 7949f97df77a Univ.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Univ.ML Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,635 @@ +(* Title: HOL/univ + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +For univ.thy +*) + +open Univ; + +(** LEAST -- the least number operator **) + + +val [prem1,prem2] = goalw Univ.thy [Least_def] + "[| P(k); !!x. x ~P(x) |] ==> (LEAST x.P(x)) = k"; +by (rtac select_equality 1); +by (fast_tac (HOL_cs addSIs [prem1,prem2]) 1); +by (cut_facts_tac [less_linear] 1); +by (fast_tac (HOL_cs addSIs [prem1] addSDs [prem2]) 1); +val Least_equality = result(); + +val [prem] = goal Univ.thy "P(k) ==> P(LEAST x.P(x))"; +by (rtac (prem RS rev_mp) 1); +by (res_inst_tac [("n","k")] less_induct 1); +by (rtac impI 1); +by (rtac classical 1); +by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1); +by (assume_tac 1); +by (assume_tac 2); +by (fast_tac HOL_cs 1); +val LeastI = result(); + +(*Proof is almost identical to the one above!*) +val [prem] = goal Univ.thy "P(k) ==> (LEAST x.P(x)) <= k"; +by (rtac (prem RS rev_mp) 1); +by (res_inst_tac [("n","k")] less_induct 1); +by (rtac impI 1); +by (rtac classical 1); +by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1); +by (assume_tac 1); +by (rtac le_refl 2); +by (fast_tac (HOL_cs addIs [less_imp_le,le_trans]) 1); +val Least_le = result(); + +val [prem] = goal Univ.thy "k < (LEAST x.P(x)) ==> ~P(k)"; +by (rtac notI 1); +by (etac (rewrite_rule [le_def] Least_le RS notE) 1); +by (rtac prem 1); +val not_less_Least = result(); + + +(** apfst -- can be used in similar type definitions **) + +goalw Univ.thy [apfst_def] "apfst(f,) = "; +by (rtac split 1); +val apfst = result(); + +val [major,minor] = goal Univ.thy + "[| q = apfst(f,p); !!x y. [| p = ; q = |] ==> R \ +\ |] ==> R"; +by (rtac PairE 1); +by (rtac minor 1); +by (assume_tac 1); +by (rtac (major RS trans) 1); +by (etac ssubst 1); +by (rtac apfst 1); +val apfstE = result(); + +(** Push -- an injection, analogous to Cons on lists **) + +val [major] = goalw Univ.thy [Push_def] "Push(i,f)=Push(j,g) ==> i=j"; +by (rtac (major RS fun_cong RS box_equals RS Suc_inject) 1); +by (rtac nat_case_0 1); +by (rtac nat_case_0 1); +val Push_inject1 = result(); + +val [major] = goalw Univ.thy [Push_def] "Push(i,f)=Push(j,g) ==> f=g"; +by (rtac (major RS fun_cong RS ext RS box_equals) 1); +by (rtac (nat_case_Suc RS ext) 1); +by (rtac (nat_case_Suc RS ext) 1); +val Push_inject2 = result(); + +val [major,minor] = goal Univ.thy + "[| Push(i,f)=Push(j,g); [| i=j; f=g |] ==> P \ +\ |] ==> P"; +by (rtac ((major RS Push_inject2) RS ((major RS Push_inject1) RS minor)) 1); +val Push_inject = result(); + +val [major] = goalw Univ.thy [Push_def] "Push(k,f)=(%z.0) ==> P"; +by (rtac (major RS fun_cong RS box_equals RS Suc_neq_Zero) 1); +by (rtac nat_case_0 1); +by (rtac refl 1); +val Push_neq_K0 = result(); + +(*** Isomorphisms ***) + +goal Univ.thy "inj(Rep_Node)"; +by (rtac inj_inverseI 1); (*cannot combine by RS: multiple unifiers*) +by (rtac Rep_Node_inverse 1); +val inj_Rep_Node = result(); + +goal Univ.thy "inj_onto(Abs_Node,Node)"; +by (rtac inj_onto_inverseI 1); +by (etac Abs_Node_inverse 1); +val inj_onto_Abs_Node = result(); + +val Abs_Node_inject = inj_onto_Abs_Node RS inj_ontoD; + + +(*** Introduction rules for Node ***) + +goalw Univ.thy [Node_def] "<%k. 0,a> : Node"; +by (fast_tac set_cs 1); +val Node_K0_I = result(); + +goalw Univ.thy [Node_def,Push_def] + "!!p. p: Node ==> apfst(Push(i), p) : Node"; +by (fast_tac (set_cs addSIs [apfst, nat_case_Suc RS trans]) 1); +val Node_Push_I = result(); + + +(*** Distinctness of constructors ***) + +(** Scons vs Atom **) + +goalw Univ.thy [Atom_def,Scons_def,Push_Node_def] "~ ((M.N) = Atom(a))"; +by (rtac notI 1); +by (etac (equalityD2 RS subsetD RS UnE) 1); +by (rtac singletonI 1); +by (REPEAT (eresolve_tac [imageE, Abs_Node_inject RS apfstE, + Pair_inject, sym RS Push_neq_K0] 1 + ORELSE resolve_tac [Node_K0_I, Rep_Node RS Node_Push_I] 1)); +val Scons_not_Atom = result(); +val Atom_not_Scons = standard (Scons_not_Atom RS not_sym); + +val Scons_neq_Atom = standard (Scons_not_Atom RS notE); +val Atom_neq_Scons = sym RS Scons_neq_Atom; + +(*** Injectiveness ***) + +(** Atomic nodes **) + +goalw Univ.thy [Atom_def] "inj(Atom)"; +by (rtac injI 1); +by (etac (singleton_inject RS Abs_Node_inject RS Pair_inject) 1); +by (REPEAT (ares_tac [Node_K0_I] 1)); +val inj_Atom = result(); +val Atom_inject = inj_Atom RS injD; + +goalw Univ.thy [Leaf_def] "inj(Leaf)"; +by (stac o_def 1); +by (rtac injI 1); +by (etac (Atom_inject RS Inl_inject) 1); +val inj_Leaf = result(); + +val Leaf_inject = inj_Leaf RS injD; + +goalw Univ.thy [Numb_def] "inj(Numb)"; +by (stac o_def 1); +by (rtac injI 1); +by (etac (Atom_inject RS Inr_inject) 1); +val inj_Numb = result(); + +val Numb_inject = inj_Numb RS injD; + +(** Injectiveness of Push_Node **) + +val [major,minor] = goalw Univ.thy [Push_Node_def] + "[| Push_Node(i,m)=Push_Node(j,n); [| i=j; m=n |] ==> P \ +\ |] ==> P"; +by (rtac (major RS Abs_Node_inject RS apfstE) 1); +by (REPEAT (resolve_tac [Rep_Node RS Node_Push_I] 1)); +by (etac (sym RS apfstE) 1); +by (rtac minor 1); +by (etac Pair_inject 1); +by (etac (Push_inject1 RS sym) 1); +by (rtac (inj_Rep_Node RS injD) 1); +by (etac trans 1); +by (safe_tac (HOL_cs addSEs [Pair_inject,Push_inject,sym])); +val Push_Node_inject = result(); + + +(** Injectiveness of Scons **) + +val [major] = goalw Univ.thy [Scons_def] "M.N <= M'.N' ==> M<=M'"; +by (cut_facts_tac [major] 1); +by (fast_tac (set_cs addSDs [Suc_inject] + addSEs [Push_Node_inject, Zero_neq_Suc]) 1); +val Scons_inject_lemma1 = result(); + +val [major] = goalw Univ.thy [Scons_def] "M.N <= M'.N' ==> N<=N'"; +by (cut_facts_tac [major] 1); +by (fast_tac (set_cs addSDs [Suc_inject] + addSEs [Push_Node_inject, Suc_neq_Zero]) 1); +val Scons_inject_lemma2 = result(); + +val [major] = goal Univ.thy "M.N = M'.N' ==> M=M'"; +by (rtac (major RS equalityE) 1); +by (REPEAT (ares_tac [equalityI, Scons_inject_lemma1] 1)); +val Scons_inject1 = result(); + +val [major] = goal Univ.thy "M.N = M'.N' ==> N=N'"; +by (rtac (major RS equalityE) 1); +by (REPEAT (ares_tac [equalityI, Scons_inject_lemma2] 1)); +val Scons_inject2 = result(); + +val [major,minor] = goal Univ.thy + "[| M.N = M'.N'; [| M=M'; N=N' |] ==> P \ +\ |] ==> P"; +by (rtac ((major RS Scons_inject2) RS ((major RS Scons_inject1) RS minor)) 1); +val Scons_inject = result(); + +(*rewrite rules*) +goal Univ.thy "(Atom(a)=Atom(b)) = (a=b)"; +by (fast_tac (HOL_cs addSEs [Atom_inject]) 1); +val Atom_Atom_eq = result(); + +goal Univ.thy "(M.N = M'.N') = (M=M' & N=N')"; +by (fast_tac (HOL_cs addSEs [Scons_inject]) 1); +val Scons_Scons_eq = result(); + +(*** Distinctness involving Leaf and Numb ***) + +(** Scons vs Leaf **) + +goalw Univ.thy [Leaf_def] "~ ((M.N) = Leaf(a))"; +by (stac o_def 1); +by (rtac Scons_not_Atom 1); +val Scons_not_Leaf = result(); +val Leaf_not_Scons = standard (Scons_not_Leaf RS not_sym); + +val Scons_neq_Leaf = standard (Scons_not_Leaf RS notE); +val Leaf_neq_Scons = sym RS Scons_neq_Leaf; + +(** Scons vs Numb **) + +goalw Univ.thy [Numb_def] "~ ((M.N) = Numb(k))"; +by (stac o_def 1); +by (rtac Scons_not_Atom 1); +val Scons_not_Numb = result(); +val Numb_not_Scons = standard (Scons_not_Numb RS not_sym); + +val Scons_neq_Numb = standard (Scons_not_Numb RS notE); +val Numb_neq_Scons = sym RS Scons_neq_Numb; + +(** Leaf vs Numb **) + +goalw Univ.thy [Leaf_def,Numb_def] "~ (Leaf(a) = Numb(k))"; +by (simp_tac (HOL_ss addsimps [Atom_Atom_eq,Inl_not_Inr]) 1); +val Leaf_not_Numb = result(); +val Numb_not_Leaf = standard (Leaf_not_Numb RS not_sym); + +val Leaf_neq_Numb = standard (Leaf_not_Numb RS notE); +val Numb_neq_Leaf = sym RS Leaf_neq_Numb; + + +(*** ndepth -- the depth of a node ***) + +val univ_simps = [apfst,Scons_not_Atom,Atom_not_Scons,Scons_Scons_eq]; +val univ_ss = nat_ss addsimps univ_simps; + + +goalw Univ.thy [ndepth_def] "ndepth (Abs_Node(<%k.0, x>)) = 0"; +by (sstac [Node_K0_I RS Abs_Node_inverse, split] 1); +by (rtac Least_equality 1); +by (rtac refl 1); +by (etac less_zeroE 1); +val ndepth_K0 = result(); + +goal Univ.thy "k < Suc(LEAST x. f(x)=0) --> ~ nat_case(k, Suc(i), f) = 0"; +by (nat_ind_tac "k" 1); +by (ALLGOALS (simp_tac nat_ss)); +by (rtac impI 1); +by (etac not_less_Least 1); +val ndepth_Push_lemma = result(); + +goalw Univ.thy [ndepth_def,Push_Node_def] + "ndepth (Push_Node(i,n)) = Suc(ndepth(n))"; +by (stac (Rep_Node RS Node_Push_I RS Abs_Node_inverse) 1); +by (cut_facts_tac [rewrite_rule [Node_def] Rep_Node] 1); +by (safe_tac set_cs); +be ssubst 1; (*instantiates type variables!*) +by (simp_tac univ_ss 1); +by (rtac Least_equality 1); +by (rewtac Push_def); +by (rtac (nat_case_Suc RS trans) 1); +by (etac LeastI 1); +by (etac (ndepth_Push_lemma RS mp) 1); +val ndepth_Push_Node = result(); + + +(*** ntrunc applied to the various node sets ***) + +goalw Univ.thy [ntrunc_def] "ntrunc(0, M) = {}"; +by (safe_tac (set_cs addSIs [equalityI] addSEs [less_zeroE])); +val ntrunc_0 = result(); + +goalw Univ.thy [Atom_def,ntrunc_def] "ntrunc(Suc(k), Atom(a)) = Atom(a)"; +by (safe_tac (set_cs addSIs [equalityI])); +by (stac ndepth_K0 1); +by (rtac zero_less_Suc 1); +val ntrunc_Atom = result(); + +goalw Univ.thy [Leaf_def] "ntrunc(Suc(k), Leaf(a)) = Leaf(a)"; +by (stac o_def 1); +by (rtac ntrunc_Atom 1); +val ntrunc_Leaf = result(); + +goalw Univ.thy [Numb_def] "ntrunc(Suc(k), Numb(i)) = Numb(i)"; +by (stac o_def 1); +by (rtac ntrunc_Atom 1); +val ntrunc_Numb = result(); + +goalw Univ.thy [Scons_def,ntrunc_def] + "ntrunc(Suc(k), M.N) = ntrunc(k,M) . ntrunc(k,N)"; +by (safe_tac (set_cs addSIs [equalityI,imageI])); +by (REPEAT (stac ndepth_Push_Node 3 THEN etac Suc_mono 3)); +by (REPEAT (rtac Suc_less_SucD 1 THEN + rtac (ndepth_Push_Node RS subst) 1 THEN + assume_tac 1)); +val ntrunc_Scons = result(); + +(** Injection nodes **) + +goalw Univ.thy [In0_def] "ntrunc(Suc(0), In0(M)) = {}"; +by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_0]) 1); +by (rewtac Scons_def); +by (safe_tac (set_cs addSIs [equalityI])); +val ntrunc_one_In0 = result(); + +goalw Univ.thy [In0_def] + "ntrunc(Suc(Suc(k)), In0(M)) = In0 (ntrunc(Suc(k),M))"; +by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_Numb]) 1); +val ntrunc_In0 = result(); + +goalw Univ.thy [In1_def] "ntrunc(Suc(0), In1(M)) = {}"; +by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_0]) 1); +by (rewtac Scons_def); +by (safe_tac (set_cs addSIs [equalityI])); +val ntrunc_one_In1 = result(); + +goalw Univ.thy [In1_def] + "ntrunc(Suc(Suc(k)), In1(M)) = In1 (ntrunc(Suc(k),M))"; +by (simp_tac (univ_ss addsimps [ntrunc_Scons,ntrunc_Numb]) 1); +val ntrunc_In1 = result(); + + +(*** Cartesian Product ***) + +goalw Univ.thy [uprod_def] "!!M N. [| M:A; N:B |] ==> (M.N) : A<*>B"; +by (REPEAT (ares_tac [singletonI,UN_I] 1)); +val uprodI = result(); + +(*The general elimination rule*) +val major::prems = goalw Univ.thy [uprod_def] + "[| c : A<*>B; \ +\ !!x y. [| x:A; y:B; c=x.y |] ==> P \ +\ |] ==> P"; +by (cut_facts_tac [major] 1); +by (REPEAT (eresolve_tac [asm_rl,singletonE,UN_E] 1 + ORELSE resolve_tac prems 1)); +val uprodE = result(); + +(*Elimination of a pair -- introduces no eigenvariables*) +val prems = goal Univ.thy + "[| (M.N) : A<*>B; [| M:A; N:B |] ==> P \ +\ |] ==> P"; +by (rtac uprodE 1); +by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Scons_inject,ssubst] 1)); +val uprodE2 = result(); + + +(*** Disjoint Sum ***) + +goalw Univ.thy [usum_def] "!!M. M:A ==> In0(M) : A<+>B"; +by (fast_tac set_cs 1); +val usum_In0I = result(); + +goalw Univ.thy [usum_def] "!!N. N:B ==> In1(N) : A<+>B"; +by (fast_tac set_cs 1); +val usum_In1I = result(); + +val major::prems = goalw Univ.thy [usum_def] + "[| u : A<+>B; \ +\ !!x. [| x:A; u=In0(x) |] ==> P; \ +\ !!y. [| y:B; u=In1(y) |] ==> P \ +\ |] ==> P"; +by (rtac (major RS UnE) 1); +by (REPEAT (rtac refl 1 + ORELSE eresolve_tac (prems@[imageE,ssubst]) 1)); +val usumE = result(); + + +(** Injection **) + +goalw Univ.thy [In0_def,In1_def] "~ (In0(M) = In1(N))"; +by (rtac notI 1); +by (etac (Scons_inject1 RS Numb_inject RS Zero_neq_Suc) 1); +val In0_not_In1 = result(); + +val In1_not_In0 = standard (In0_not_In1 RS not_sym); +val In0_neq_In1 = standard (In0_not_In1 RS notE); +val In1_neq_In0 = sym RS In0_neq_In1; + +val [major] = goalw Univ.thy [In0_def] "In0(M) = In0(N) ==> M=N"; +by (rtac (major RS Scons_inject2) 1); +val In0_inject = result(); + +val [major] = goalw Univ.thy [In1_def] "In1(M) = In1(N) ==> M=N"; +by (rtac (major RS Scons_inject2) 1); +val In1_inject = result(); + + +(*** proving equality of sets and functions using ntrunc ***) + +goalw Univ.thy [ntrunc_def] "ntrunc(k,M) <= M"; +by (fast_tac set_cs 1); +val ntrunc_subsetI = result(); + +val [major] = goalw Univ.thy [ntrunc_def] + "(!!k. ntrunc(k,M) <= N) ==> M<=N"; +by (fast_tac (set_cs addIs [less_add_Suc1, less_add_Suc2, + major RS subsetD]) 1); +val ntrunc_subsetD = result(); + +(*A generalized form of the take-lemma*) +val [major] = goal Univ.thy "(!!k. ntrunc(k,M) = ntrunc(k,N)) ==> M=N"; +by (rtac equalityI 1); +by (ALLGOALS (rtac ntrunc_subsetD)); +by (ALLGOALS (rtac (ntrunc_subsetI RSN (2, subset_trans)))); +by (rtac (major RS equalityD1) 1); +by (rtac (major RS equalityD2) 1); +val ntrunc_equality = result(); + +val [major] = goal Univ.thy + "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"; +by (rtac (ntrunc_equality RS ext) 1); +by (resolve_tac ([major RS fun_cong] RL [o_def RS subst]) 1); +val ntrunc_o_equality = result(); + +(*** Monotonicity ***) + +goalw Univ.thy [uprod_def] "!!A B. [| A<=A'; B<=B' |] ==> A<*>B <= A'<*>B'"; +by (fast_tac set_cs 1); +val uprod_mono = result(); + +goalw Univ.thy [usum_def] "!!A B. [| A<=A'; B<=B' |] ==> A<+>B <= A'<+>B'"; +by (fast_tac set_cs 1); +val usum_mono = result(); + +goalw Univ.thy [Scons_def] "!!M N. [| M<=M'; N<=N' |] ==> M.N <= M'.N'"; +by (fast_tac set_cs 1); +val Scons_mono = result(); + +goalw Univ.thy [In0_def] "!!M N. M<=N ==> In0(M) <= In0(N)"; +by (REPEAT (ares_tac [subset_refl,Scons_mono] 1)); +val In0_mono = result(); + +goalw Univ.thy [In1_def] "!!M N. M<=N ==> In1(M) <= In1(N)"; +by (REPEAT (ares_tac [subset_refl,Scons_mono] 1)); +val In1_mono = result(); + + +(*** Split and Case ***) + +goalw Univ.thy [Split_def] "Split(M.N, c) = c(M,N)"; +by (fast_tac (set_cs addIs [select_equality] addEs [Scons_inject]) 1); +val Split = result(); + +goalw Univ.thy [Case_def] "Case(In0(M), c, d) = c(M)"; +by (fast_tac (set_cs addIs [select_equality] + addEs [make_elim In0_inject, In0_neq_In1]) 1); +val Case_In0 = result(); + +goalw Univ.thy [Case_def] "Case(In1(N), c, d) = d(N)"; +by (fast_tac (set_cs addIs [select_equality] + addEs [make_elim In1_inject, In1_neq_In0]) 1); +val Case_In1 = result(); + +(**** UN x. B(x) rules ****) + +goalw Univ.thy [ntrunc_def] "ntrunc(k, UN x.f(x)) = (UN x. ntrunc(k, f(x)))"; +by (fast_tac (set_cs addIs [equalityI]) 1); +val ntrunc_UN1 = result(); + +goalw Univ.thy [Scons_def] "(UN x.f(x)) . M = (UN x. f(x) . M)"; +by (fast_tac (set_cs addIs [equalityI]) 1); +val Scons_UN1_x = result(); + +goalw Univ.thy [Scons_def] "M . (UN x.f(x)) = (UN x. M . f(x))"; +by (fast_tac (set_cs addIs [equalityI]) 1); +val Scons_UN1_y = result(); + +goalw Univ.thy [In0_def] "In0(UN x.f(x)) = (UN x. In0(f(x)))"; +br Scons_UN1_y 1; +val In0_UN1 = result(); + +goalw Univ.thy [In1_def] "In1(UN x.f(x)) = (UN x. In1(f(x)))"; +br Scons_UN1_y 1; +val In1_UN1 = result(); + + +(*** Equality : the diagonal relation ***) + +goalw Univ.thy [diag_def] "!!a A. a:A ==> : diag(A)"; +by (REPEAT (ares_tac [singletonI,UN_I] 1)); +val diagI = result(); + +(*The general elimination rule*) +val major::prems = goalw Univ.thy [diag_def] + "[| c : diag(A); \ +\ !!x y. [| x:A; c = |] ==> P \ +\ |] ==> P"; +by (rtac (major RS UN_E) 1); +by (REPEAT (eresolve_tac [asm_rl,singletonE] 1 ORELSE resolve_tac prems 1)); +val diagE = result(); + +(*** Equality for Cartesian Product ***) + +goal Univ.thy + "split(, %x x'. split(, %y y'. {})) = {}"; +by (simp_tac univ_ss 1); +val dprod_lemma = result(); + +goalw Univ.thy [dprod_def] + "!!r s. [| :r; :s |] ==> : r<**>s"; +by (REPEAT (ares_tac [UN_I] 1)); +by (rtac (singletonI RS (dprod_lemma RS equalityD2 RS subsetD)) 1); +val dprodI = result(); + +(*The general elimination rule*) +val major::prems = goalw Univ.thy [dprod_def] + "[| c : r<**>s; \ +\ !!x y x' y'. [| : r; : s; c = |] ==> P \ +\ |] ==> P"; +by (cut_facts_tac [major] 1); +by (REPEAT (eresolve_tac [asm_rl,singletonE,UN_E] 1)); +by (res_inst_tac [("p","u")] PairE 1); +by (res_inst_tac [("p","v")] PairE 1); +by (safe_tac HOL_cs); +by (REPEAT (ares_tac prems 1)); +by (safe_tac (set_cs addSDs [dprod_lemma RS equalityD1 RS subsetD])); +val dprodE = result(); + + +(*** Equality for Disjoint Sum ***) + +goalw Univ.thy [dsum_def] "!!r. :r ==> : r<++>s"; +by (fast_tac (set_cs addSIs [split RS equalityD2 RS subsetD]) 1); +val dsum_In0I = result(); + +goalw Univ.thy [dsum_def] "!!r. :s ==> : r<++>s"; +by (fast_tac (set_cs addSIs [split RS equalityD2 RS subsetD]) 1); +val dsum_In1I = result(); + +val major::prems = goalw Univ.thy [dsum_def] + "[| w : r<++>s; \ +\ !!x x'. [| : r; w = |] ==> P; \ +\ !!y y'. [| : s; w = |] ==> P \ +\ |] ==> P"; +by (rtac (major RS UnE) 1); +by (safe_tac set_cs); +by (res_inst_tac [("p","u")] PairE 1); +by (res_inst_tac [("p","v")] PairE 2); +by (safe_tac (set_cs addSEs prems + addSDs [split RS equalityD1 RS subsetD])); +val dsumE = result(); + + +(*** Monotonicity ***) + +goalw Univ.thy [dprod_def] "!!r s. [| r<=r'; s<=s' |] ==> r<**>s <= r'<**>s'"; +by (fast_tac set_cs 1); +val dprod_mono = result(); + +goalw Univ.thy [dsum_def] "!!r s. [| r<=r'; s<=s' |] ==> r<++>s <= r'<++>s'"; +by (fast_tac set_cs 1); +val dsum_mono = result(); + + +(*** Bounding theorems ***) + +goal Univ.thy "diag(A) <= Sigma(A,%x.A)"; +by (fast_tac (set_cs addIs [SigmaI] addSEs [diagE]) 1); +val diag_subset_Sigma = result(); + +val prems = goal Univ.thy + "[| r <= Sigma(A,%x.B); s <= Sigma(C,%x.D) |] ==> \ +\ (r<**>s) <= Sigma(A<*>C, %z. B<*>D)"; +by (cut_facts_tac prems 1); +by (fast_tac (set_cs addSIs [SigmaI,uprodI] + addSEs [dprodE,SigmaE2]) 1); +val dprod_subset_Sigma = result(); + +goal Univ.thy + "!!r s. [| r <= Sigma(A,B); s <= Sigma(C,D) |] ==> \ +\ (r<**>s) <= Sigma(A<*>C, %z. Split(z, %x y. B(x)<*>D(y)))"; +by (safe_tac (set_cs addSIs [SigmaI,uprodI] addSEs [dprodE])); +by (stac Split 3); +by (ALLGOALS (fast_tac (set_cs addSIs [uprodI] addSEs [SigmaE2]))); +val dprod_subset_Sigma2 = result(); + +goal Univ.thy + "!!r s. [| r <= Sigma(A,%x.B); s <= Sigma(C,%x.D) |] ==> \ +\ (r<++>s) <= Sigma(A<+>C, %z. B<+>D)"; +by (fast_tac (set_cs addSIs [SigmaI,usum_In0I,usum_In1I] + addSEs [dsumE,SigmaE2]) 1); +val dsum_subset_Sigma = result(); + + +(*** Domain ***) + +goal Univ.thy "fst `` diag(A) = A"; +by (fast_tac (set_cs addIs [equalityI, fst_imageI, diagI] + addSEs [fst_imageE, Pair_inject, diagE]) 1); +val fst_image_diag = result(); + +goal Univ.thy "fst `` (r<**>s) = (fst``r) <*> (fst``s)"; +by (fast_tac (set_cs addIs [equalityI, fst_imageI, uprodI, dprodI] + addSEs [fst_imageE, Pair_inject, uprodE, dprodE]) 1); +val fst_image_dprod = result(); + +goal Univ.thy "fst `` (r<++>s) = (fst``r) <+> (fst``s)"; +by (fast_tac (set_cs addIs [equalityI, fst_imageI, usum_In0I, usum_In1I, + dsum_In0I, dsum_In1I] + addSEs [fst_imageE, Pair_inject, usumE, dsumE]) 1); +val fst_image_dsum = result(); + +val fst_image_simps = [fst_image_diag, fst_image_dprod, fst_image_dsum]; +val fst_image_ss = univ_ss addsimps fst_image_simps; + +val univ_cs = + set_cs addSIs [SigmaI,uprodI,dprodI] + addIs [usum_In0I,usum_In1I,dsum_In0I,dsum_In1I] + addSEs [diagE,uprodE,dprodE,usumE,dsumE,SigmaE2,Pair_inject];