diff -r 000000000000 -r 7949f97df77a ex/PL.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/PL.ML Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,344 @@ +(* Title: HOL/ex/prop-log.ML + ID: $Id$ + Author: Tobias Nipkow & Lawrence C Paulson + Copyright 1993 TU Muenchen & University of Cambridge + +For ex/prop-log.thy. Inductive definition of propositional logic. +Soundness and completeness w.r.t. truth-tables. + +Prove: If H|=p then G|=p where G:Fin(H) +*) + +open PL; + +val rule_defs = [axK_def, axS_def, axDN_def, ruleMP_def]; + + +(** Monotonicity and unfolding of the function **) + +goalw PL.thy rule_defs "mono(%X. H Un axK Un axS Un axDN Un ruleMP(X))"; +by (rtac monoI 1); +by(fast_tac set_cs 1); +val thms_bnd_mono = result(); + +goalw PL.thy [thms_def] "!!G H. G<=H ==> thms(G) <= thms(H)"; +by (REPEAT (ares_tac [subset_refl, Un_mono, lfp_mono] 1)); +val thms_mono = result(); + +(** Introduction rules for the consequence relation **) + +(* thms(H) = H Int Un axK Un axS Un ruleMP(thms(H)) *) +val thms_unfold = thms_bnd_mono RS (thms_def RS def_lfp_Tarski); + +(*Proof by hypothesis*) +val prems = goalw PL.thy [conseq_def] "p:H ==> H |- p"; +by (rtac (thms_unfold RS ssubst) 1); +by (fast_tac (set_cs addSIs prems) 1); +val conseq_H = result(); + +(*Proof by axiom K*) +goalw PL.thy [conseq_def] "H |- p->q->p"; +by (rtac (thms_unfold RS ssubst) 1); +by (rewtac axK_def); +by (fast_tac set_cs 1); +val conseq_K = result(); + +(*Proof by axiom S*) +goalw PL.thy [conseq_def] "H |- (p->q->r) -> (p->q) -> p -> r"; +by (rtac (thms_unfold RS ssubst) 1); +by (rewtac axS_def); +by (fast_tac set_cs 1); +val conseq_S = result(); + +(*Proof by axiom DN (double negation) *) +goalw PL.thy [conseq_def] "H |- ((p->false) -> false) -> p"; +by (rtac (thms_unfold RS ssubst) 1); +by (rewtac axDN_def); +by (fast_tac set_cs 1); +val conseq_DN = result(); + +(*Proof by rule MP (Modus Ponens) *) +val [prempq,premp] = goalw PL.thy [conseq_def] + "[| H |- p->q; H |- p |] ==> H |- q"; +by (rtac (thms_unfold RS ssubst) 1); +by (rewtac ruleMP_def); +by (fast_tac (set_cs addSIs [premp,prempq]) 1); +val conseq_MP = result(); + +(*Rule is called I for Identity Combinator, not for Introduction*) +goal PL.thy "H |- p->p"; +by (rtac (conseq_S RS conseq_MP RS conseq_MP) 1); +by (rtac conseq_K 2); +by (rtac conseq_K 1); +val conseq_I = result(); + +(** Weakening, left and right **) + +(*This order of premises is convenient with RS*) +val prems = goalw PL.thy [conseq_def] "[| G<=H; G |- p |] ==> H |- p"; +by (rtac (thms_mono RS subsetD) 1); +by (REPEAT (resolve_tac prems 1)); +val weaken_left = result(); + +(* H |- p ==> insert(a,H) |- p *) +val weaken_left_insert = subset_insertI RS weaken_left; + +val weaken_left_Un1 = Un_upper1 RS weaken_left; +val weaken_left_Un2 = Un_upper2 RS weaken_left; + +val prems = goal PL.thy "H |- q ==> H |- p->q"; +by (rtac (conseq_K RS conseq_MP) 1); +by (REPEAT (resolve_tac prems 1)); +val weaken_right = result(); + +(** Rule induction for H|-p **) + +(*Careful unfolding/folding to avoid a big expansion*) +val major::prems = goalw PL.thy [conseq_def] + "[| H |- a; \ +\ !!x. x:H ==> P(x); \ +\ !!x y. P(x->y->x); \ +\ !!x y z. P((x->y->z)->(x->y)->x->z); \ +\ !!x. P(((x->false)->false)->x); \ +\ !!x y. [| H |- x->y; H |- x; P(x->y); P(x) |] ==> P(y) \ +\ |] ==> P(a)"; +by (rtac (major RS (thms_def RS def_induct)) 1); +by (rtac thms_bnd_mono 1); +by (rewrite_tac rule_defs); +by (fast_tac (set_cs addIs prems) 1); +val conseq_induct = result(); + +(*The deduction theorem*) +val [major] = goal PL.thy "insert(p,H) |- q ==> H |- p->q"; +by (rtac (major RS conseq_induct) 1); +by (fast_tac (set_cs addIs [conseq_I, conseq_H RS weaken_right]) 1); +by (fast_tac (set_cs addIs [conseq_K RS weaken_right]) 1); +by (fast_tac (set_cs addIs [conseq_S RS weaken_right]) 1); +by (fast_tac (set_cs addIs [conseq_DN RS weaken_right]) 1); +by (fast_tac (set_cs addIs [conseq_S RS conseq_MP RS conseq_MP]) 1); +val deduction = result(); + + +(*The cut rule*) +val prems = goal PL.thy "[| H|-p; insert(p,H) |- q |] ==> H |- q"; +by (rtac (deduction RS conseq_MP) 1); +by (REPEAT (resolve_tac prems 1)); +val cut = result(); + +val prems = goal PL.thy "H |- false ==> H |- p"; +by (rtac (conseq_DN RS conseq_MP) 1); +by (rtac weaken_right 1); +by (resolve_tac prems 1); +val conseq_falseE = result(); + +(* [| H |- p->false; H |- p; q: pl |] ==> H |- q *) +val conseq_notE = standard (conseq_MP RS conseq_falseE); + +(** The function eval **) + +val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp]; + +goalw PL.thy [eval_def] "tt[false] = False"; +by (simp_tac pl_ss 1); +val eval_false = result(); + +goalw PL.thy [eval_def] "tt[#v] = (v:tt)"; +by (simp_tac pl_ss 1); +val eval_var = result(); + +goalw PL.thy [eval_def] "tt[p->q] = (tt[p]-->tt[q])"; +by (simp_tac pl_ss 1); +val eval_imp = result(); + +val pl_ss = pl_ss addsimps [eval_false, eval_var, eval_imp]; + +(** The function hyps **) + +goalw PL.thy [hyps_def] "hyps(false,tt) = {}"; +by (simp_tac pl_ss 1); +val hyps_false = result(); + +goalw PL.thy [hyps_def] "hyps(#v,tt) = {if(v:tt, #v, #v->false)}"; +by (simp_tac pl_ss 1); +val hyps_var = result(); + +goalw PL.thy [hyps_def] "hyps(p->q,tt) = hyps(p,tt) Un hyps(q,tt)"; +by (simp_tac pl_ss 1); +val hyps_imp = result(); + +val pl_ss = pl_ss addsimps [hyps_false, hyps_var, hyps_imp]; + +val ball_eq = prove_goalw Set.thy [Ball_def] "(!x:A.P(x)) = (!x.x:A --> P(x))" + (fn _ => [rtac refl 1]); + +(*Soundness of the rules wrt truth-table semantics*) +val [major] = goalw PL.thy [sat_def] "H |- p ==> H |= p"; +by (rtac (major RS conseq_induct) 1); +by (fast_tac (set_cs addSDs [eval_imp RS iffD1 RS mp]) 5); +by (ALLGOALS (asm_simp_tac(pl_ss addsimps + [ball_eq,not_def RS fun_cong RS sym]))); +val soundness = result(); + +(** Structural induction on pl + +val major::prems = goalw PL.thy pl_defs + "[| q: pl; \ +\ P(false); \ +\ !!v. v:nat ==> P(#v); \ +\ !!q1 q2. [| q1: pl; q2: pl; P(q1); P(q2) |] ==> P(q1->q2) \ +\ |] ==> P(q)"; +by (rtac (major RS sexp_induct) 1); +by (etac nat_induct 1); +by (REPEAT (ares_tac prems 1)); +val pl_induct = result(); + **) +(*** Towards the completeness proof ***) + +val [premf] = goal PL.thy "H |- p->false ==> H |- p->q"; +by (rtac deduction 1); +by (rtac (premf RS weaken_left_insert RS conseq_notE) 1); +by (rtac conseq_H 1); +by (rtac insertI1 1); +val false_imp = result(); + +val [premp,premq] = goal PL.thy + "[| H |- p; H |- q->false |] ==> H |- (p->q)->false"; +by (rtac deduction 1); +by (rtac (premq RS weaken_left_insert RS conseq_MP) 1); +by (rtac (conseq_H RS conseq_MP) 1); +by (rtac insertI1 1); +by (rtac (premp RS weaken_left_insert) 1); +val imp_false = result(); + +(*This formulation is required for strong induction hypotheses*) +goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)"; +by (rtac (expand_if RS iffD2) 1); +by(res_inst_tac[("x","p")]spec 1); +by (rtac pl_ind 1); +by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H]))); +by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2, + weaken_right, imp_false] + addSEs [false_imp]) 1); +val hyps_conseq_if = result(); + +(*Key lemma for completeness; yields a set of assumptions satisfying p*) +val [sat] = goalw PL.thy [sat_def] "{} |= p ==> hyps(p,tt) |- p"; +by (rtac (sat RS spec RS mp RS if_P RS subst) 1 THEN + rtac hyps_conseq_if 2); +by (fast_tac set_cs 1); +val sat_conseq_p = result(); + +(*For proving certain theorems in our new propositional logic*) +val conseq_cs = + set_cs addSIs [deduction] addIs [conseq_H, conseq_H RS conseq_MP]; + +(*The excluded middle in the form of an elimination rule*) +goal PL.thy "H |- (p->q) -> ((p->false)->q) -> q"; +by (rtac (deduction RS deduction) 1); +by (rtac (conseq_DN RS conseq_MP) 1); +by (ALLGOALS (best_tac (conseq_cs addSIs prems))); +val conseq_excluded_middle = result(); + +(*Hard to prove directly because it requires cuts*) +val prems = goal PL.thy + "[| insert(p,H) |- q; insert(p->false,H) |- q |] ==> H |- q"; +by (rtac (conseq_excluded_middle RS conseq_MP RS conseq_MP) 1); +by (REPEAT (resolve_tac (prems@[deduction]) 1)); +val conseq_excluded_middle_rule = result(); + +(*** Completeness -- lemmas for reducing the set of assumptions ***) + +(*For the case hyps(p,t)-insert(#v,Y) |- p; + we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *) +goal PL.thy "!p.hyps(p, t-{v}) <= insert(#v->false, hyps(p,t)-{#v})"; +by (rtac pl_ind 1); +by (simp_tac pl_ss 1); +by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); +by (fast_tac (set_cs addSEs [sym RS var_neq_imp] addSDs [var_inject]) 1); +by (simp_tac pl_ss 1); +by (fast_tac set_cs 1); +val hyps_Diff = result() RS spec; + +(*For the case hyps(p,t)-insert(#v -> false,Y) |- p; + we also have hyps(p,t)-{#v->false} <= hyps(p, insert(v,t)) *) +goal PL.thy "!p.hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{#v->false})"; +by (rtac pl_ind 1); +by (simp_tac pl_ss 1); +by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); +by (fast_tac (set_cs addSEs [var_neq_imp, imp_inject] addSDs [var_inject]) 1); +by (simp_tac pl_ss 1); +by (fast_tac set_cs 1); +val hyps_insert = result() RS spec; + +(** Two lemmas for use with weaken_left **) + +goal Set.thy "B-C <= insert(a, B-insert(a,C))"; +by (fast_tac set_cs 1); +val insert_Diff_same = result(); + +goal Set.thy "insert(a, B-{c}) - D <= insert(a, B-insert(c,D))"; +by (fast_tac set_cs 1); +val insert_Diff_subset2 = result(); + +(*The set hyps(p,t) is finite, and elements have the form #v or #v->false; + could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*) +goal PL.thy "!p.hyps(p,t) : Fin(UN v:{x.True}. {#v, #v->false})"; +by (rtac pl_ind 1); +by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN' + fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI]))); +val hyps_finite = result() RS spec; + +val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left; + +(*Induction on the finite set of assumptions hyps(p,t0). + We may repeatedly subtract assumptions until none are left!*) +val [sat] = goal PL.thy + "{} |= p ==> !t. hyps(p,t) - hyps(p,t0) |- p"; +by (rtac (hyps_finite RS Fin_induct) 1); +by (simp_tac (pl_ss addsimps [sat RS sat_conseq_p]) 1); +by (safe_tac set_cs); +(*Case hyps(p,t)-insert(#v,Y) |- p *) +by (rtac conseq_excluded_middle_rule 1); +by (rtac (insert_Diff_same RS weaken_left) 1); +by (etac spec 1); +by (rtac (insert_Diff_subset2 RS weaken_left) 1); +by (rtac (hyps_Diff RS Diff_weaken_left) 1); +by (etac spec 1); +(*Case hyps(p,t)-insert(#v -> false,Y) |- p *) +by (rtac conseq_excluded_middle_rule 1); +by (rtac (insert_Diff_same RS weaken_left) 2); +by (etac spec 2); +by (rtac (insert_Diff_subset2 RS weaken_left) 1); +by (rtac (hyps_insert RS Diff_weaken_left) 1); +by (etac spec 1); +val completeness_0_lemma = result(); + +(*The base case for completeness*) +val [sat] = goal PL.thy "{} |= p ==> {} |- p"; +by (rtac (Diff_cancel RS subst) 1); +by (rtac (sat RS (completeness_0_lemma RS spec)) 1); +val completeness_0 = result(); + +(*A semantic analogue of the Deduction Theorem*) +val [sat] = goalw PL.thy [sat_def] "insert(p,H) |= q ==> H |= p->q"; +by (simp_tac pl_ss 1); +by (cfast_tac [sat] 1); +val sat_imp = result(); + +val [finite] = goal PL.thy "H: Fin({p.True}) ==> !p. H |= p --> H |- p"; +by (rtac (finite RS Fin_induct) 1); +by (safe_tac (set_cs addSIs [completeness_0])); +by (rtac (weaken_left_insert RS conseq_MP) 1); +by (fast_tac (set_cs addSIs [sat_imp]) 1); +by (fast_tac conseq_cs 1); +val completeness_lemma = result(); + +val completeness = completeness_lemma RS spec RS mp; + +val [finite] = goal PL.thy "H: Fin({p.True}) ==> (H |- p) = (H |= p)"; +by (fast_tac (set_cs addSEs [soundness, finite RS completeness]) 1); +val conseq_iff = result(); + +writeln"Reached end of file."; + +