diff -r 000000000000 -r 7949f97df77a ex/pl.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/pl.thy Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,55 @@ +(* Title: HOL/ex/prop-log + ID: $Id$ + Author: Tobias Nipkow + Copyright 1991 University of Cambridge + +Inductive definition of propositional logic. + +*) + +PL = Finite + +types pl 1 +arities pl :: (term)term +consts + false :: "'a pl" + "->" :: "['a pl,'a pl] => 'a pl" (infixr 90) + var :: "'a => 'a pl" ("#_") + pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" + axK,axS,axDN:: "'a pl set" + ruleMP,thms :: "'a pl set => 'a pl set" + "|-" :: "['a pl set, 'a pl] => bool" (infixl 50) + "|=" :: "['a pl set, 'a pl] => bool" (infixl 50) + eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) + hyps :: "['a pl, 'a set] => 'a pl set" +rules + + (** Proof theory for propositional logic **) + + axK_def "axK == {x . ? p q. x = p->q->p}" + axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" + axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" + + (*the use of subsets simplifies the proof of monotonicity*) + ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" + + thms_def + "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))" + + conseq_def "H |- p == p : thms(H)" + + sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" + +pl_rec_var "pl_rec(#v,f,y,z) = f(v)" +pl_rec_false "pl_rec(false,f,y,z) = y" +pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" + +eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" + +hyps_def + "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, #a->false)}, {}, op Un)" + +var_inject "(#v = #w) ==> v = w" +imp_inject "[| (p -> q) = (p' -> q'); [| p = p'; q = q' |] ==> R |] ==> R" +var_neq_imp "(#v = (p -> q)) ==> R" +pl_ind "[| P(false); !!v. P(#v); !!p q. P(p)-->P(q)-->P(p->q)|] ==> !t.P(t)" +end