diff -r 000000000000 -r 7949f97df77a hol.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hol.ML Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,334 @@ +(* Title: HOL/hol.ML + ID: $Id$ + Author: Tobias Nipkow + Copyright 1991 University of Cambridge + +For hol.thy +Derived rules from Appendix of Mike Gordons HOL Report, Cambridge TR 68 +*) + +open HOL; + +signature HOL_LEMMAS = + sig + val allE: thm + val all_dupE: thm + val allI: thm + val arg_cong: thm + val fun_cong: thm + val box_equals: thm + val ccontr: thm + val classical: thm + val cong: thm + val conjunct1: thm + val conjunct2: thm + val conjE: thm + val conjI: thm + val contrapos: thm + val disjCI: thm + val disjE: thm + val disjI1: thm + val disjI2: thm + val eqTrueI: thm + val eqTrueE: thm + val ex1E: thm + val ex1I: thm + val exCI: thm + val exI: thm + val exE: thm + val excluded_middle: thm + val FalseE: thm + val False_neq_True: thm + val iffCE : thm + val iffD1: thm + val iffD2: thm + val iffE: thm + val iffI: thm + val impCE: thm + val impE: thm + val not_sym: thm + val notE: thm + val notI: thm + val notnotD : thm + val rev_mp: thm + val select_equality: thm + val spec: thm + val sstac: thm list -> int -> tactic + val ssubst: thm + val stac: thm -> int -> tactic + val strip_tac: int -> tactic + val swap: thm + val sym: thm + val trans: thm + val TrueI: thm + end; + +structure HOL_Lemmas : HOL_LEMMAS = + +struct + +(** Equality **) + +val sym = prove_goal HOL.thy "s=t ==> t=s" + (fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]); + +(*calling "standard" reduces maxidx to 0*) +val ssubst = standard (sym RS subst); + +val trans = prove_goal HOL.thy "[| r=s; s=t |] ==> r=t" + (fn prems => + [rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]); + +(*Useful with eresolve_tac for proving equalties from known equalities. + a = b + | | + c = d *) +val box_equals = prove_goal HOL.thy + "[| a=b; a=c; b=d |] ==> c=d" + (fn prems=> + [ (rtac trans 1), + (rtac trans 1), + (rtac sym 1), + (REPEAT (resolve_tac prems 1)) ]); + +(** Congruence rules for meta-application **) + +(*similar to AP_THM in Gordon's HOL*) +val fun_cong = prove_goal HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)" + (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); + +(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) +val arg_cong = prove_goal HOL.thy "x=y ==> f(x)=f(y)" + (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); + +val cong = prove_goal HOL.thy + "[| f = g; x::'a = y |] ==> f(x) = g(y)" + (fn [prem1,prem2] => + [rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]); + +(** Equality of booleans -- iff **) + +val iffI = prove_goal HOL.thy + "[| P ==> Q; Q ==> P |] ==> P=Q" + (fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]); + +val iffD2 = prove_goal HOL.thy "[| P=Q; Q |] ==> P" + (fn prems => + [rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]); + +val iffD1 = sym RS iffD2; + +val iffE = prove_goal HOL.thy + "[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R" + (fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]); + +(** True **) + +val TrueI = refl RS (True_def RS iffD2); + +val eqTrueI = prove_goal HOL.thy "P ==> P=True" + (fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]); + +val eqTrueE = prove_goal HOL.thy "P=True ==> P" + (fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]); + +(** Universal quantifier **) + +val allI = prove_goal HOL.thy "(!!x::'a. P(x)) ==> !x. P(x)" + (fn [asm] => [rtac (All_def RS ssubst) 1, rtac (asm RS (eqTrueI RS ext)) 1]); + +val spec = prove_goal HOL.thy "! x::'a.P(x) ==> P(x)" + (fn prems => + [ rtac eqTrueE 1, + resolve_tac (prems RL [All_def RS subst] RL [fun_cong]) 1 ]); + +val allE = prove_goal HOL.thy "[| !x.P(x); P(x) ==> R |] ==> R" + (fn major::prems=> + [ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]); + +val all_dupE = prove_goal HOL.thy + "[| ! x.P(x); [| P(x); ! x.P(x) |] ==> R |] ==> R" + (fn prems => + [ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]); + + +(** False ** Depends upon spec; it is impossible to do propositional logic + before quantifiers! **) + +val FalseE = prove_goal HOL.thy "False ==> P" + (fn prems => [rtac spec 1, rtac (False_def RS subst) 1, resolve_tac prems 1]); + +val False_neq_True = prove_goal HOL.thy "False=True ==> P" + (fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]); + + +(** Negation **) + +val notI = prove_goal HOL.thy "(P ==> False) ==> ~P" + (fn prems=> [rtac (not_def RS ssubst) 1, rtac impI 1, eresolve_tac prems 1]); + +val notE = prove_goal HOL.thy "[| ~P; P |] ==> R" + (fn prems => + [rtac (mp RS FalseE) 1, + resolve_tac prems 2, rtac (not_def RS subst) 1, + resolve_tac prems 1]); + +(** Implication **) + +val impE = prove_goal HOL.thy "[| P-->Q; P; Q ==> R |] ==> R" + (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); + +(* Reduces Q to P-->Q, allowing substitution in P. *) +val rev_mp = prove_goal HOL.thy "[| P; P --> Q |] ==> Q" + (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); + +val contrapos = prove_goal HOL.thy "[| ~Q; P==>Q |] ==> ~P" + (fn [major,minor]=> + [ (rtac (major RS notE RS notI) 1), + (etac minor 1) ]); + +(* ~(?t = ?s) ==> ~(?s = ?t) *) +val [not_sym] = compose(sym,2,contrapos); + + +(** Existential quantifier **) + +val exI = prove_goal HOL.thy "P(x) ==> ? x::'a.P(x)" + (fn prems => + [rtac (selectI RS (Ex_def RS ssubst)) 1, + resolve_tac prems 1]); + +val exE = prove_goal HOL.thy "[| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q" + (fn prems => + [resolve_tac prems 1, res_inst_tac [("P","%C.C(P)")] subst 1, + rtac Ex_def 1, resolve_tac prems 1]); + + +(** Conjunction **) + +val conjI = prove_goal HOL.thy "[| P; Q |] ==> P&Q" + (fn prems => + [ (rtac (and_def RS ssubst) 1), + (REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)) ]); + +val conjunct1 = prove_goal HOL.thy "[| P & Q |] ==> P" + (fn prems => + [ (resolve_tac (prems RL [and_def RS subst] RL [spec] RL [mp]) 1), + (REPEAT(ares_tac [impI] 1)) ]); + +val conjunct2 = prove_goal HOL.thy "[| P & Q |] ==> Q" + (fn prems => + [ (resolve_tac (prems RL [and_def RS subst] RL [spec] RL [mp]) 1), + (REPEAT(ares_tac [impI] 1)) ]); + +val conjE = prove_goal HOL.thy "[| P&Q; [| P; Q |] ==> R |] ==> R" + (fn prems => + [cut_facts_tac prems 1, resolve_tac prems 1, + etac conjunct1 1, etac conjunct2 1]); + +(** Disjunction *) + +val disjI1 = prove_goal HOL.thy "P ==> P|Q" + (fn [prem] => + [rtac (or_def RS ssubst) 1, + REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); + +val disjI2 = prove_goal HOL.thy "Q ==> P|Q" + (fn [prem] => + [rtac (or_def RS ssubst) 1, + REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]); + +val disjE = prove_goal HOL.thy "[| P | Q; P ==> R; Q ==> R |] ==> R" + (fn [a1,a2,a3] => + [rtac (mp RS mp) 1, rtac spec 1, rtac (or_def RS subst) 1, rtac a1 1, + rtac (a2 RS impI) 1, atac 1, rtac (a3 RS impI) 1, atac 1]); + +(** CCONTR -- classical logic **) + +val ccontr = prove_goal HOL.thy "(~P ==> False) ==> P" + (fn prems => + [rtac (True_or_False RS (disjE RS eqTrueE)) 1, atac 1, + rtac spec 1, rtac (False_def RS subst) 1, resolve_tac prems 1, + rtac ssubst 1, atac 1, rtac (not_def RS ssubst) 1, + REPEAT (ares_tac [impI] 1) ]); + +val classical = prove_goal HOL.thy "(~P ==> P) ==> P" + (fn prems => + [rtac ccontr 1, + REPEAT (ares_tac (prems@[notE]) 1)]); + + +(*Double negation law*) +val notnotD = prove_goal HOL.thy "~~P ==> P" + (fn [major]=> + [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]); + + +(** Unique existence **) + +val ex1I = prove_goal HOL.thy + "[| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)" + (fn prems => + [ (rtac (Ex1_def RS ssubst) 1), + (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]); + +val ex1E = prove_goal HOL.thy + "[| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R" + (fn major::prems => + [ (resolve_tac ([major] RL [Ex1_def RS subst] RL [exE]) 1), + (REPEAT (etac conjE 1 ORELSE ares_tac prems 1)) ]); + + +(** Select: Hilbert's Epsilon-operator **) + +val select_equality = prove_goal HOL.thy + "[| P(a); !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a" + (fn prems => [ resolve_tac prems 1, + rtac selectI 1, + resolve_tac prems 1 ]); + +(** Classical intro rules for disjunction and existential quantifiers *) + +val disjCI = prove_goal HOL.thy "(~Q ==> P) ==> P|Q" + (fn prems=> + [ (rtac classical 1), + (REPEAT (ares_tac (prems@[disjI1,notI]) 1)), + (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]); + +val excluded_middle = prove_goal HOL.thy "~P | P" + (fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]); + +(*Classical implies (-->) elimination. *) +val impCE = prove_goal HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" + (fn major::prems=> + [ rtac (excluded_middle RS disjE) 1, + REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]); + +(*Classical <-> elimination. *) +val iffCE = prove_goal HOL.thy + "[| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R" + (fn major::prems => + [ (rtac (major RS iffE) 1), + (REPEAT (DEPTH_SOLVE_1 + (eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]); + +val exCI = prove_goal HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x.P(x)" + (fn prems=> + [ (rtac ccontr 1), + (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1)) ]); + +(*Required by the "classical" module*) +val swap = prove_goal HOL.thy "~P ==> (~Q ==> P) ==> Q" + (fn major::prems=> + [ rtac ccontr 1, rtac (major RS notE) 1, REPEAT (ares_tac prems 1)]); + +(** Standard abbreviations **) + +fun stac th = rtac(th RS ssubst); +fun sstac ths = EVERY' (map stac ths); +fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); + +end; + +open HOL_Lemmas; +