diff -r 000000000000 -r 7949f97df77a set.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/set.thy Thu Sep 16 12:21:07 1993 +0200 @@ -0,0 +1,111 @@ +(* Title: HOL/set.thy + ID: $Id$ + Author: Tobias Nipkow + Copyright 1993 University of Cambridge +*) + +Set = Ord + + +types + set 1 + +arities + set :: (term) term + set :: (term) ord + set :: (term) minus + + +consts + + (* Constants *) + + Collect :: "('a => bool) => 'a set" (*comprehension*) + Compl :: "('a set) => 'a set" (*complement*) + Int :: "['a set, 'a set] => 'a set" (infixl 70) + Un :: "['a set, 'a set] => 'a set" (infixl 65) + UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*) + UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10) + INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10) + Union, Inter :: "(('a set)set) => 'a set" (*of a set*) + range :: "('a => 'b) => 'b set" (*of function*) + Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*) + inj, surj :: "('a => 'b) => bool" (*injective/surjective*) + inj_onto :: "['a => 'b, 'a set] => bool" + "``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90) + ":" :: "['a, 'a set] => bool" (infixl 50) (*membership*) + + (* Finite Sets *) + + insert :: "['a, 'a set] => 'a set" + "{}" :: "'a set" ("{}") + "@Finset" :: "args => 'a set" ("{(_)}") + + + (** Binding Constants **) + + "@Coll" :: "[idt, bool] => 'a set" ("(1{_./ _})") (*collection*) + + (* Big Intersection / Union *) + + "@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(3INT _:_./ _)" 10) + "@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(3UN _:_./ _)" 10) + + (* Bounded Quantifiers *) + + "@Ball" :: "[idt, 'a set, bool] => bool" ("(3! _:_./ _)" 10) + "@Bex" :: "[idt, 'a set, bool] => bool" ("(3? _:_./ _)" 10) + "*Ball" :: "[idt, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10) + "*Bex" :: "[idt, 'a set, bool] => bool" ("(3EX _:_./ _)" 10) + + +translations + "{x. P}" == "Collect(%x. P)" + "INT x:A. B" == "INTER(A, %x. B)" + "UN x:A. B" == "UNION(A, %x. B)" + "! x:A. P" == "Ball(A, %x. P)" + "? x:A. P" == "Bex(A, %x. P)" + "ALL x:A. P" => "Ball(A, %x. P)" + "EX x:A. P" => "Bex(A, %x. P)" + + "{x, xs}" == "insert(x, {xs})" + "{x}" == "insert(x, {})" + + +rules + + (* Isomorphisms between Predicates and Sets *) + + mem_Collect_eq "(a : {x.P(x)}) = P(a)" + Collect_mem_eq "{x.x:A} = A" + + (* Definitions *) + + Ball_def "Ball(A, P) == ! x. x:A --> P(x)" + Bex_def "Bex(A, P) == ? x. x:A & P(x)" + subset_def "A <= B == ! x:A. x:B" + Compl_def "Compl(A) == {x. ~x:A}" + Un_def "A Un B == {x.x:A | x:B}" + Int_def "A Int B == {x.x:A & x:B}" + set_diff_def "A-B == {x. x:A & ~x:B}" + INTER_def "INTER(A, B) == {y. ! x:A. y: B(x)}" + UNION_def "UNION(A, B) == {y. ? x:A. y: B(x)}" + INTER1_def "INTER1(B) == INTER({x.True}, B)" + UNION1_def "UNION1(B) == UNION({x.True}, B)" + Inter_def "Inter(S) == (INT x:S. x)" + Union_def "Union(S) == (UN x:S. x)" + empty_def "{} == {x. False}" + insert_def "insert(a, B) == {x.x=a} Un B" + range_def "range(f) == {y. ? x. y=f(x)}" + image_def "f``A == {y. ? x:A. y=f(x)}" + inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y" + inj_onto_def "inj_onto(f, A) == ! x:A. ! y:A. f(x)=f(y) --> x=y" + surj_def "surj(f) == ! y. ? x. y=f(x)" + +end + + +ML + +val print_ast_translation = + map HOL.mk_alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")]; +