diff -r d9527f97246e -r 89669c58e506 intr_elim.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/intr_elim.ML Thu Aug 25 11:01:45 1994 +0200 @@ -0,0 +1,129 @@ +(* Title: HOL/intr_elim.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1994 University of Cambridge + +Introduction/elimination rule module -- for Inductive/Coinductive Definitions +*) + +signature INDUCTIVE_ARG = (** Description of a (co)inductive def **) + sig + val thy : theory (*new theory with inductive defs*) + val monos : thm list (*monotonicity of each M operator*) + val con_defs : thm list (*definitions of the constructors*) + end; + +(*internal items*) +signature INDUCTIVE_I = + sig + val rec_tms : term list (*the recursive sets*) + val intr_tms : term list (*terms for the introduction rules*) + end; + +signature INTR_ELIM = + sig + val thy : theory (*copy of input theory*) + val defs : thm list (*definitions made in thy*) + val mono : thm (*monotonicity for the lfp definition*) + val unfold : thm (*fixed-point equation*) + val intrs : thm list (*introduction rules*) + val elim : thm (*case analysis theorem*) + val raw_induct : thm (*raw induction rule from Fp.induct*) + val mk_cases : thm list -> string -> thm (*generates case theorems*) + val rec_names : string list (*names of recursive sets*) + end; + +(*prove intr/elim rules for a fixedpoint definition*) +functor Intr_elim_Fun + (structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end + and Fp: FP) : INTR_ELIM = +struct +open Logic Inductive Ind_Syntax; + +val rec_names = map (#1 o dest_Const o head_of) rec_tms; +val big_rec_name = space_implode "_" rec_names; + +val _ = deny (big_rec_name mem map ! (stamps_of_thy thy)) + ("Definition " ^ big_rec_name ^ + " would clash with the theory of the same name!"); + +(*fetch fp definitions from the theory*) +val big_rec_def::part_rec_defs = + map (get_def thy) + (case rec_names of [_] => rec_names | _ => big_rec_name::rec_names); + + +val sign = sign_of thy; + +(********) +val _ = writeln " Proving monotonicity..."; + +val Const("==",_) $ _ $ (Const(_,fpT) $ fp_abs) = + big_rec_def |> rep_thm |> #prop |> unvarify; + +(*For the type of the argument of mono*) +val [monoT] = binder_types fpT; + +val mono = + prove_goalw_cterm [] + (cterm_of sign (mk_tprop (Const("mono", monoT-->boolT) $ fp_abs))) + (fn _ => + [rtac monoI 1, + REPEAT (ares_tac (basic_monos @ monos) 1)]); + +val unfold = standard (mono RS (big_rec_def RS Fp.Tarski)); + +(********) +val _ = writeln " Proving the introduction rules..."; + +fun intro_tacsf disjIn prems = + [(*insert prems and underlying sets*) + cut_facts_tac prems 1, + rtac (unfold RS ssubst) 1, + REPEAT (resolve_tac [Part_eqI,CollectI] 1), + (*Now 1-2 subgoals: the disjunction, perhaps equality.*) + rtac disjIn 1, + REPEAT (ares_tac [refl,exI,conjI] 1)]; + +(*combines disjI1 and disjI2 to access the corresponding nested disjunct...*) +val mk_disj_rls = + let fun f rl = rl RS disjI1 + and g rl = rl RS disjI2 + in accesses_bal(f, g, asm_rl) end; + +val intrs = map (uncurry (prove_goalw_cterm part_rec_defs)) + (map (cterm_of sign) intr_tms ~~ + map intro_tacsf (mk_disj_rls(length intr_tms))); + +(********) +val _ = writeln " Proving the elimination rule..."; + +(*Includes rules for Suc and Pair since they are common constructions*) +val elim_rls = [asm_rl, FalseE, Suc_neq_Zero, Zero_neq_Suc, + make_elim Suc_inject, + refl_thin, conjE, exE, disjE]; + +(*Breaks down logical connectives in the monotonic function*) +val basic_elim_tac = + REPEAT (SOMEGOAL (eresolve_tac (elim_rls@sumprod_free_SEs) + ORELSE' bound_hyp_subst_tac)) + THEN prune_params_tac; + +val elim = rule_by_tactic basic_elim_tac (unfold RS equals_CollectD); + +(*Applies freeness of the given constructors, which *must* be unfolded by + the given defs. Cannot simply use the local con_defs because con_defs=[] + for inference systems. *) +fun con_elim_tac defs = + rewrite_goals_tac defs THEN basic_elim_tac THEN fold_tac defs; + +(*String s should have the form t:Si where Si is an inductive set*) +fun mk_cases defs s = + rule_by_tactic (con_elim_tac defs) + (assume_read thy s RS elim); + +val defs = big_rec_def::part_rec_defs; + +val raw_induct = standard ([big_rec_def, mono] MRS Fp.induct); +end; +