diff -r 12dd5d2e266b -r 978854c19b5e Arith.ML --- a/Arith.ML Thu Nov 24 20:31:09 1994 +0100 +++ b/Arith.ML Fri Nov 25 09:12:16 1994 +0100 @@ -21,13 +21,13 @@ val diff_0 = diff_def RS def_nat_rec_0; -val diff_0_eq_0 = prove_goalw Arith.thy [diff_def, pred_def] +qed_goalw "diff_0_eq_0" Arith.thy [diff_def, pred_def] "0 - n = 0" (fn _ => [nat_ind_tac "n" 1, ALLGOALS(asm_simp_tac nat_ss)]); (*Must simplify BEFORE the induction!! (Else we get a critical pair) Suc(m) - Suc(n) rewrites to pred(Suc(m) - n) *) -val diff_Suc_Suc = prove_goalw Arith.thy [diff_def, pred_def] +qed_goalw "diff_Suc_Suc" Arith.thy [diff_def, pred_def] "Suc(m) - Suc(n) = m - n" (fn _ => [simp_tac nat_ss 1, nat_ind_tac "n" 1, ALLGOALS(asm_simp_tac nat_ss)]); @@ -44,23 +44,23 @@ (*** Addition ***) -val add_0_right = prove_goal Arith.thy "m + 0 = m" +qed_goal "add_0_right" Arith.thy "m + 0 = m" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); -val add_Suc_right = prove_goal Arith.thy "m + Suc(n) = Suc(m+n)" +qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); val arith_ss = arith_ss addsimps [add_0_right,add_Suc_right]; (*Associative law for addition*) -val add_assoc = prove_goal Arith.thy "(m + n) + k = m + ((n + k)::nat)" +qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); (*Commutative law for addition*) -val add_commute = prove_goal Arith.thy "m + n = n + (m::nat)" +qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); -val add_left_commute = prove_goal Arith.thy "x+(y+z)=y+((x+z)::nat)" +qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)" (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1, rtac (add_commute RS arg_cong) 1]); @@ -71,36 +71,36 @@ (*** Multiplication ***) (*right annihilation in product*) -val mult_0_right = prove_goal Arith.thy "m * 0 = 0" +qed_goal "mult_0_right" Arith.thy "m * 0 = 0" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); (*right Sucessor law for multiplication*) -val mult_Suc_right = prove_goal Arith.thy "m * Suc(n) = m + (m * n)" +qed_goal "mult_Suc_right" Arith.thy "m * Suc(n) = m + (m * n)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]); val arith_ss = arith_ss addsimps [mult_0_right,mult_Suc_right]; (*Commutative law for multiplication*) -val mult_commute = prove_goal Arith.thy "m * n = n * (m::nat)" +qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS (asm_simp_tac arith_ss)]); (*addition distributes over multiplication*) -val add_mult_distrib = prove_goal Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)" +qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]); -val add_mult_distrib2 = prove_goal Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)" +qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac (arith_ss addsimps add_ac))]); val arith_ss = arith_ss addsimps [add_mult_distrib,add_mult_distrib2]; (*Associative law for multiplication*) -val mult_assoc = prove_goal Arith.thy "(m * n) * k = m * ((n * k)::nat)" +qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); -val mult_left_commute = prove_goal Arith.thy "x*(y*z) = y*((x*z)::nat)" +qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)" (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1, rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]); @@ -108,7 +108,7 @@ (*** Difference ***) -val diff_self_eq_0 = prove_goal Arith.thy "m - m = 0" +qed_goal "diff_self_eq_0" Arith.thy "m - m = 0" (fn _ => [nat_ind_tac "m" 1, ALLGOALS(asm_simp_tac arith_ss)]); (*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *)