diff -r 9459592608e2 -r 9e9feb5f15dc HOL.thy --- a/HOL.thy Sun Apr 24 11:27:38 1994 +0200 +++ b/HOL.thy Tue May 03 11:30:09 1994 +0200 @@ -19,8 +19,8 @@ types bool - letbinds, letbind 0 - case_syn,cases_syn 0 + letbinds letbind + case_syn cases_syn arities fun :: (term, term) term @@ -103,15 +103,15 @@ (* Definitions *) - True_def "True == ((%x::bool.x)=(%x.x))" - All_def "All == (%P. P = (%x.True))" - Ex_def "Ex == (%P. P(@x.P(x)))" - False_def "False == (!P.P)" - not_def "not == (%P. P-->False)" - and_def "op & == (%P Q. !R. (P-->Q-->R) --> R)" - or_def "op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)" - Ex1_def "Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x))" - Let_def "Let(s, f) == f(s)" + True_def "True == ((%x::bool.x)=(%x.x))" + All_def "All(P) == (P = (%x.True))" + Ex_def "Ex(P) == P(@x.P(x))" + False_def "False == (!P.P)" + not_def "~ P == P-->False" + and_def "P & Q == !R. (P-->Q-->R) --> R" + or_def "P | Q == !R. (P-->R) --> (Q-->R) --> R" + Ex1_def "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" + Let_def "Let(s,f) == f(s)" (* Axioms *) @@ -120,10 +120,9 @@ (* Misc Definitions *) - Inv_def "Inv == (%(f::'a=>'b) y. @x. f(x)=y)" - o_def "op o == (%(f::'b=>'c) g (x::'a). f(g(x)))" - - if_def "if == (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))" + Inv_def "Inv(f::'a=>'b) == (% y. @x. f(x)=y)" + o_def "(f::'b=>'c) o g == (%(x::'a). f(g(x)))" + if_def "if(P,x,y) == @z::'a. (P=True --> z=x) & (P=False --> z=y)" end