diff -r f04b33ce250f -r a4dc62a46ee4 Gfp.ML --- a/Gfp.ML Tue Oct 24 14:59:17 1995 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,145 +0,0 @@ -(* Title: HOL/gfp - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1993 University of Cambridge - -For gfp.thy. The Knaster-Tarski Theorem for greatest fixed points. -*) - -open Gfp; - -(*** Proof of Knaster-Tarski Theorem using gfp ***) - -(* gfp(f) is the least upper bound of {u. u <= f(u)} *) - -val prems = goalw Gfp.thy [gfp_def] "[| X <= f(X) |] ==> X <= gfp(f)"; -by (rtac (CollectI RS Union_upper) 1); -by (resolve_tac prems 1); -qed "gfp_upperbound"; - -val prems = goalw Gfp.thy [gfp_def] - "[| !!u. u <= f(u) ==> u<=X |] ==> gfp(f) <= X"; -by (REPEAT (ares_tac ([Union_least]@prems) 1)); -by (etac CollectD 1); -qed "gfp_least"; - -val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) <= f(gfp(f))"; -by (EVERY1 [rtac gfp_least, rtac subset_trans, atac, - rtac (mono RS monoD), rtac gfp_upperbound, atac]); -qed "gfp_lemma2"; - -val [mono] = goal Gfp.thy "mono(f) ==> f(gfp(f)) <= gfp(f)"; -by (EVERY1 [rtac gfp_upperbound, rtac (mono RS monoD), - rtac gfp_lemma2, rtac mono]); -qed "gfp_lemma3"; - -val [mono] = goal Gfp.thy "mono(f) ==> gfp(f) = f(gfp(f))"; -by (REPEAT (resolve_tac [equalityI,gfp_lemma2,gfp_lemma3,mono] 1)); -qed "gfp_Tarski"; - -(*** Coinduction rules for greatest fixed points ***) - -(*weak version*) -val prems = goal Gfp.thy - "[| a: X; X <= f(X) |] ==> a : gfp(f)"; -by (rtac (gfp_upperbound RS subsetD) 1); -by (REPEAT (ares_tac prems 1)); -qed "weak_coinduct"; - -val [prem,mono] = goal Gfp.thy - "[| X <= f(X Un gfp(f)); mono(f) |] ==> \ -\ X Un gfp(f) <= f(X Un gfp(f))"; -by (rtac (prem RS Un_least) 1); -by (rtac (mono RS gfp_lemma2 RS subset_trans) 1); -by (rtac (Un_upper2 RS subset_trans) 1); -by (rtac (mono RS mono_Un) 1); -qed "coinduct_lemma"; - -(*strong version, thanks to Coen & Frost*) -goal Gfp.thy - "!!X. [| mono(f); a: X; X <= f(X Un gfp(f)) |] ==> a : gfp(f)"; -by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1); -by (REPEAT (ares_tac [UnI1, Un_least] 1)); -qed "coinduct"; - -val [mono,prem] = goal Gfp.thy - "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))"; -br (mono RS mono_Un RS subsetD) 1; -br (mono RS gfp_lemma2 RS subsetD RS UnI2) 1; -by (rtac prem 1); -qed "gfp_fun_UnI2"; - -(*** Even Stronger version of coinduct [by Martin Coen] - - instead of the condition X <= f(X) - consider X <= (f(X) Un f(f(X)) ...) Un gfp(X) ***) - -val [prem] = goal Gfp.thy "mono(f) ==> mono(%x.f(x) Un X Un B)"; -by (REPEAT (ares_tac [subset_refl, monoI, Un_mono, prem RS monoD] 1)); -qed "coinduct3_mono_lemma"; - -val [prem,mono] = goal Gfp.thy - "[| X <= f(lfp(%x.f(x) Un X Un gfp(f))); mono(f) |] ==> \ -\ lfp(%x.f(x) Un X Un gfp(f)) <= f(lfp(%x.f(x) Un X Un gfp(f)))"; -by (rtac subset_trans 1); -by (rtac (mono RS coinduct3_mono_lemma RS lfp_lemma3) 1); -by (rtac (Un_least RS Un_least) 1); -by (rtac subset_refl 1); -by (rtac prem 1); -by (rtac (mono RS gfp_Tarski RS equalityD1 RS subset_trans) 1); -by (rtac (mono RS monoD) 1); -by (rtac (mono RS coinduct3_mono_lemma RS lfp_Tarski RS ssubst) 1); -by (rtac Un_upper2 1); -qed "coinduct3_lemma"; - -val prems = goal Gfp.thy - "[| mono(f); a:X; X <= f(lfp(%x.f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"; -by (rtac (coinduct3_lemma RSN (2,weak_coinduct)) 1); -by (resolve_tac (prems RL [coinduct3_mono_lemma RS lfp_Tarski RS ssubst]) 1); -by (rtac (UnI2 RS UnI1) 1); -by (REPEAT (resolve_tac prems 1)); -qed "coinduct3"; - - -(** Definition forms of gfp_Tarski and coinduct, to control unfolding **) - -val [rew,mono] = goal Gfp.thy "[| A==gfp(f); mono(f) |] ==> A = f(A)"; -by (rewtac rew); -by (rtac (mono RS gfp_Tarski) 1); -qed "def_gfp_Tarski"; - -val rew::prems = goal Gfp.thy - "[| A==gfp(f); mono(f); a:X; X <= f(X Un A) |] ==> a: A"; -by (rewtac rew); -by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct]) 1)); -qed "def_coinduct"; - -(*The version used in the induction/coinduction package*) -val prems = goal Gfp.thy - "[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); \ -\ a: X; !!z. z: X ==> P(X Un A, z) |] ==> \ -\ a : A"; -by (rtac def_coinduct 1); -by (REPEAT (ares_tac (prems @ [subsetI,CollectI]) 1)); -qed "def_Collect_coinduct"; - -val rew::prems = goal Gfp.thy - "[| A==gfp(f); mono(f); a:X; X <= f(lfp(%x.f(x) Un X Un A)) |] ==> a: A"; -by (rewtac rew); -by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems @ [coinduct3]) 1)); -qed "def_coinduct3"; - -(*Monotonicity of gfp!*) -val prems = goal Gfp.thy - "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"; -by (rtac gfp_upperbound 1); -by (rtac subset_trans 1); -by (rtac gfp_lemma2 1); -by (resolve_tac prems 1); -by (resolve_tac prems 1); -val gfp_mono = result(); - -(*Monotonicity of gfp!*) -val [prem] = goal Gfp.thy "[| !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"; -br (gfp_upperbound RS gfp_least) 1; -be (prem RSN (2,subset_trans)) 1; -qed "gfp_mono";