diff -r f04b33ce250f -r a4dc62a46ee4 IOA/example/Lemmas.ML --- a/IOA/example/Lemmas.ML Tue Oct 24 14:59:17 1995 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,239 +0,0 @@ -(* Title: HOL/IOA/example/Lemmas.ML - ID: $Id$ - Author: Tobias Nipkow & Konrad Slind - Copyright 1994 TU Muenchen - -(Mostly) Arithmetic lemmas -Should realy go in Arith.ML. -Also: Get rid of all the --> in favour of ==> !!! -*) - -(* Logic *) -val prems = goal HOL.thy "(P ==> Q-->R) ==> P&Q --> R"; - by(fast_tac (HOL_cs addDs prems) 1); -qed "imp_conj_lemma"; - -goal HOL.thy "(P --> (? x. Q(x))) = (? x. P --> Q(x))"; - by(fast_tac HOL_cs 1); -qed "imp_ex_equiv"; - -goal HOL.thy "(A --> B & C) = ((A --> B) & (A --> C))"; - by (fast_tac HOL_cs 1); -qed "fork_lemma"; - -goal HOL.thy "((A --> B) & (C --> B)) = ((A | C) --> B)"; - by (fast_tac HOL_cs 1); -qed "imp_or_lem"; - -goal HOL.thy "(X = (~ Y)) = ((~X) = Y)"; - by (fast_tac HOL_cs 1); -qed "neg_flip"; - -goal HOL.thy "P --> Q(M) --> Q(if(P,M,N))"; - by (rtac impI 1); - by (rtac impI 1); - by (rtac (expand_if RS iffD2) 1); - by (fast_tac HOL_cs 1); -qed "imp_true_decompose"; - -goal HOL.thy "(~P) --> Q(N) --> Q(if(P,M,N))"; - by (rtac impI 1); - by (rtac impI 1); - by (rtac (expand_if RS iffD2) 1); - by (fast_tac HOL_cs 1); -qed "imp_false_decompose"; - - -(* Sets *) -val set_lemmas = - map (fn s => prove_goal Set.thy s (fn _ => [fast_tac set_cs 1])) - ["f(x) : (UN x. {f(x)})", - "f(x,y) : (UN x y. {f(x,y)})", - "!!a. (!x. a ~= f(x)) ==> a ~: (UN x. {f(x)})", - "!!a. (!x y. a ~= f(x,y)) ==> a ~: (UN x y. {f(x,y)})"]; - - -(* Arithmetic *) -goal Arith.thy "n ~= 0 --> Suc(m+pred(n)) = m+n"; - by (nat_ind_tac "n" 1); - by (REPEAT(simp_tac arith_ss 1)); -val Suc_pred_lemma = store_thm("Suc_pred_lemma", result() RS mp); - -goal Arith.thy "x <= y --> x <= Suc(y)"; - by (rtac impI 1); - by (rtac (le_eq_less_or_eq RS iffD2) 1); - by (rtac disjI1 1); - by (dtac (le_eq_less_or_eq RS iffD1) 1); - by (etac disjE 1); - by (etac less_SucI 1); - by (asm_simp_tac nat_ss 1); -val leq_imp_leq_suc = store_thm("leq_imp_leq_suc", result() RS mp); - -(* Same as previous! *) -goal Arith.thy "(x::nat)<=y --> x<=Suc(y)"; - by (simp_tac (arith_ss addsimps [le_eq_less_or_eq]) 1); -qed "leq_suc"; - -goal Arith.thy "((m::nat) + n = m + p) = (n = p)"; - by (nat_ind_tac "m" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); -qed "left_plus_cancel"; - -goal Arith.thy "((x::nat) + y = Suc(x + z)) = (y = Suc(z))"; - by (nat_ind_tac "x" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); -qed "left_plus_cancel_inside_succ"; - -goal Arith.thy "(x ~= 0) = (? y. x = Suc(y))"; - by (nat_ind_tac "x" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); - by (fast_tac HOL_cs 1); -qed "nonzero_is_succ"; - -goal Arith.thy "(m::nat) < n --> m + p < n + p"; - by (nat_ind_tac "p" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); -qed "less_add_same_less"; - -goal Arith.thy "(x::nat)<= y --> x<=y+k"; - by (nat_ind_tac "k" 1); - by (simp_tac arith_ss 1); - by (asm_full_simp_tac (arith_ss addsimps [leq_suc]) 1); -qed "leq_add_leq"; - -goal Arith.thy "(x::nat) + y <= z --> x <= z"; - by (nat_ind_tac "y" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); - by (rtac impI 1); - by (dtac Suc_leD 1); - by (fast_tac HOL_cs 1); -qed "left_add_leq"; - -goal Arith.thy "(A::nat) < B --> C < D --> A + C < B + D"; - by (rtac impI 1); - by (rtac impI 1); - by (rtac less_trans 1); - by (rtac (less_add_same_less RS mp) 1); - by (assume_tac 1); - by (rtac (add_commute RS ssubst)1);; - by (res_inst_tac [("m1","B")] (add_commute RS ssubst) 1); - by (rtac (less_add_same_less RS mp) 1); - by (assume_tac 1); -qed "less_add_cong"; - -goal Arith.thy "(A::nat) <= B --> C <= D --> A + C <= B + D"; - by (rtac impI 1); - by (rtac impI 1); - by (asm_full_simp_tac (arith_ss addsimps [le_eq_less_or_eq]) 1); - by (safe_tac HOL_cs); - by (rtac (less_add_cong RS mp RS mp) 1); - by (assume_tac 1); - by (assume_tac 1); - by (rtac (less_add_same_less RS mp) 1); - by (assume_tac 1); - by (rtac (add_commute RS ssubst)1);; - by (res_inst_tac [("m1","B")] (add_commute RS ssubst) 1); - by (rtac (less_add_same_less RS mp) 1); - by (assume_tac 1); -qed "less_eq_add_cong"; - -goal Arith.thy "(w <= y) --> ((x::nat) + y <= z) --> (x + w <= z)"; - by (rtac impI 1); - by (dtac (less_eq_add_cong RS mp) 1); - by (cut_facts_tac [le_refl] 1); - by (dres_inst_tac [("P","x<=x")] mp 1);by (assume_tac 1); - by (asm_full_simp_tac (HOL_ss addsimps [add_commute]) 1); - by (rtac impI 1); - by (etac le_trans 1); - by (assume_tac 1); -qed "leq_add_left_cong"; - -goal Arith.thy "(? x. y = Suc(x)) = (~(y = 0))"; - by (nat_ind_tac "y" 1); - by (simp_tac arith_ss 1); - by (rtac iffI 1); - by (asm_full_simp_tac arith_ss 1); - by (fast_tac HOL_cs 1); -qed "suc_not_zero"; - -goal Arith.thy "Suc(x) <= y --> (? z. y = Suc(z))"; - by (rtac impI 1); - by (asm_full_simp_tac (arith_ss addsimps [le_eq_less_or_eq]) 1); - by (safe_tac HOL_cs); - by (fast_tac HOL_cs 2); - by (asm_simp_tac (arith_ss addsimps [suc_not_zero]) 1); - by (rtac ccontr 1); - by (asm_full_simp_tac (arith_ss addsimps [suc_not_zero]) 1); - by (hyp_subst_tac 1); - by (asm_full_simp_tac arith_ss 1); -qed "suc_leq_suc"; - -goal Arith.thy "~0 n = 0"; - by (nat_ind_tac "n" 1); - by (asm_simp_tac arith_ss 1); - by (safe_tac HOL_cs); - by (asm_full_simp_tac arith_ss 1); - by (asm_full_simp_tac arith_ss 1); -qed "zero_eq"; - -goal Arith.thy "x < Suc(y) --> x<=y"; - by (nat_ind_tac "n" 1); - by (asm_simp_tac arith_ss 1); - by (safe_tac HOL_cs); - by (etac less_imp_le 1); -qed "less_suc_imp_leq"; - -goal Arith.thy "0 Suc(pred(x)) = x"; - by (nat_ind_tac "x" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); -qed "suc_pred_id"; - -goal Arith.thy "0 (pred(x) = y) = (x = Suc(y))"; - by (nat_ind_tac "x" 1); - by (simp_tac arith_ss 1); - by (asm_simp_tac arith_ss 1); -qed "pred_suc"; - -goal Arith.thy "(x ~= 0) = (0 (y <= x)"; - by (nat_ind_tac "y" 1); - by (simp_tac arith_ss 1); - by (simp_tac (arith_ss addsimps - [Suc_le_mono, le_refl RS (leq_add_leq RS mp)]) 1); -qed "plus_leq_lem"; - -(* Lists *) - -goal List.thy "(xs @ (y#ys)) ~= []"; - by (list.induct_tac "xs" 1); - by (simp_tac list_ss 1); - by (asm_simp_tac list_ss 1); -qed "append_cons"; - -goal List.thy "(x ~= hd(xs@ys)) = (x ~= if(xs = [], hd(ys), hd(xs)))"; - by (list.induct_tac "xs" 1); - by (simp_tac list_ss 1); - by (asm_full_simp_tac list_ss 1); -qed "not_hd_append"; - -goal List.thy "(L = (x#rst)) --> (L = []) --> P"; - by (simp_tac list_ss 1); -qed "list_cases"; - -goal List.thy "(? L2. L1 = x#L2) --> (L1 ~= [])"; - by (strip_tac 1); - by (etac exE 1); - by (asm_simp_tac list_ss 1); -qed "cons_imp_not_null";