diff -r f04b33ce250f -r a4dc62a46ee4 Prod.thy --- a/Prod.thy Tue Oct 24 14:59:17 1995 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,66 +0,0 @@ -(* Title: HOL/Prod.thy - ID: Prod.thy,v 1.5 1994/08/19 09:04:27 lcp Exp - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1992 University of Cambridge - -Ordered Pairs and the Cartesian product type. -The unit type. -*) - -Prod = Fun + - -(** Products **) - -(* type definition *) - -consts - Pair_Rep :: "['a, 'b] => ['a, 'b] => bool" - -defs - Pair_Rep_def "Pair_Rep == (%a b. %x y. x=a & y=b)" - -subtype (Prod) - ('a, 'b) "*" (infixr 20) - = "{f. ? a b. f = Pair_Rep(a::'a, b::'b)}" - - -(* abstract constants and syntax *) - -consts - fst :: "'a * 'b => 'a" - snd :: "'a * 'b => 'b" - split :: "[['a, 'b] => 'c, 'a * 'b] => 'c" - prod_fun :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd" - Pair :: "['a, 'b] => 'a * 'b" - Sigma :: "['a set, 'a => 'b set] => ('a * 'b) set" - -syntax - "@Tuple" :: "args => 'a * 'b" ("(1<_>)") - -translations - "" == ">" - "" == "Pair(x, y)" - "" => "x" - -defs - Pair_def "Pair(a, b) == Abs_Prod(Pair_Rep(a, b))" - fst_def "fst(p) == @a. ? b. p = " - snd_def "snd(p) == @b. ? a. p = " - split_def "split(c, p) == c(fst(p), snd(p))" - prod_fun_def "prod_fun(f, g) == split(%x y.)" - Sigma_def "Sigma(A, B) == UN x:A. UN y:B(x). {}" - - - -(** Unit **) - -subtype (Unit) - unit = "{p. p = True}" - -consts - Unity :: "unit" ("<>") - -defs - Unity_def "Unity == Abs_Unit(True)" - -end