diff -r f04b33ce250f -r a4dc62a46ee4 Set.thy --- a/Set.thy Tue Oct 24 14:59:17 1995 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,145 +0,0 @@ -(* Title: HOL/Set.thy - ID: $Id$ - Author: Tobias Nipkow - Copyright 1993 University of Cambridge -*) - -Set = Ord + - -types - 'a set - -arities - set :: (term) term - -instance - set :: (term) {ord, minus} - -consts - "{}" :: "'a set" ("{}") - insert :: "['a, 'a set] => 'a set" - Collect :: "('a => bool) => 'a set" (*comprehension*) - Compl :: "('a set) => 'a set" (*complement*) - Int :: "['a set, 'a set] => 'a set" (infixl 70) - Un :: "['a set, 'a set] => 'a set" (infixl 65) - UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*) - UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10) - INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10) - Union, Inter :: "(('a set)set) => 'a set" (*of a set*) - Pow :: "'a set => 'a set set" (*powerset*) - range :: "('a => 'b) => 'b set" (*of function*) - Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*) - inj, surj :: "('a => 'b) => bool" (*inj/surjective*) - inj_onto :: "['a => 'b, 'a set] => bool" - "``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90) - ":" :: "['a, 'a set] => bool" (infixl 50) (*membership*) - - -syntax - - "~:" :: "['a, 'a set] => bool" (infixl 50) - - "@Finset" :: "args => 'a set" ("{(_)}") - - "@Coll" :: "[idt, bool] => 'a set" ("(1{_./ _})") - "@SetCompr" :: "['a, idts, bool] => 'a set" ("(1{_ |/_./ _})") - - (* Big Intersection / Union *) - - "@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(3INT _:_./ _)" 10) - "@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(3UN _:_./ _)" 10) - - (* Bounded Quantifiers *) - - "@Ball" :: "[idt, 'a set, bool] => bool" ("(3! _:_./ _)" 10) - "@Bex" :: "[idt, 'a set, bool] => bool" ("(3? _:_./ _)" 10) - "*Ball" :: "[idt, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10) - "*Bex" :: "[idt, 'a set, bool] => bool" ("(3EX _:_./ _)" 10) - -translations - "x ~: y" == "~ (x : y)" - "{x, xs}" == "insert(x, {xs})" - "{x}" == "insert(x, {})" - "{x. P}" == "Collect(%x. P)" - "INT x:A. B" == "INTER(A, %x. B)" - "UN x:A. B" == "UNION(A, %x. B)" - "! x:A. P" == "Ball(A, %x. P)" - "? x:A. P" == "Bex(A, %x. P)" - "ALL x:A. P" => "Ball(A, %x. P)" - "EX x:A. P" => "Bex(A, %x. P)" - - -rules - - (* Isomorphisms between Predicates and Sets *) - - mem_Collect_eq "(a : {x.P(x)}) = P(a)" - Collect_mem_eq "{x.x:A} = A" - - -defs - Ball_def "Ball(A, P) == ! x. x:A --> P(x)" - Bex_def "Bex(A, P) == ? x. x:A & P(x)" - subset_def "A <= B == ! x:A. x:B" - Compl_def "Compl(A) == {x. ~x:A}" - Un_def "A Un B == {x.x:A | x:B}" - Int_def "A Int B == {x.x:A & x:B}" - set_diff_def "A - B == {x. x:A & ~x:B}" - INTER_def "INTER(A, B) == {y. ! x:A. y: B(x)}" - UNION_def "UNION(A, B) == {y. ? x:A. y: B(x)}" - INTER1_def "INTER1(B) == INTER({x.True}, B)" - UNION1_def "UNION1(B) == UNION({x.True}, B)" - Inter_def "Inter(S) == (INT x:S. x)" - Union_def "Union(S) == (UN x:S. x)" - Pow_def "Pow(A) == {B. B <= A}" - empty_def "{} == {x. False}" - insert_def "insert(a, B) == {x.x=a} Un B" - range_def "range(f) == {y. ? x. y=f(x)}" - image_def "f``A == {y. ? x:A. y=f(x)}" - inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y" - inj_onto_def "inj_onto(f, A) == ! x:A. ! y:A. f(x)=f(y) --> x=y" - surj_def "surj(f) == ! y. ? x. y=f(x)" - -end - -ML - -local - -(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *) -(* {y. ? x1..xn. y = e & P} is only translated if [0..n] subset bvs(e) *) - -val ex_tr = snd(mk_binder_tr("? ","Ex")); - -fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1 - | nvars(_) = 1; - -fun setcompr_tr[e,idts,b] = - let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e - val P = Syntax.const("op &") $ eq $ b - val exP = ex_tr [idts,P] - in Syntax.const("Collect") $ Abs("",dummyT,exP) end; - -val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY")); - -fun setcompr_tr'[Abs(_,_,P)] = - let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1) - | ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ e) $ _, n) = - if n>0 andalso m=n andalso - ((0 upto (n-1)) subset add_loose_bnos(e,0,[])) - then () else raise Match - - fun tr'(_ $ abs) = - let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs] - in Syntax.const("@SetCompr") $ e $ idts $ Q end - in ok(P,0); tr'(P) end; - -in - -val parse_translation = [("@SetCompr", setcompr_tr)]; -val print_translation = [("Collect", setcompr_tr')]; -val print_ast_translation = - map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")]; - -end; -