diff -r fa4aebe5b6f1 -r da0e86b4b352 IOA/example/Lemmas.ML --- a/IOA/example/Lemmas.ML Wed Mar 01 17:37:09 1995 +0100 +++ b/IOA/example/Lemmas.ML Wed Mar 01 17:44:05 1995 +0100 @@ -126,11 +126,6 @@ by (assume_tac 1); qed "less_add_cong"; -goal Nat.thy "!!i. [| i < j; j <= k |] ==> i < (k::nat)"; - by (dtac le_imp_less_or_eq 1); - by (fast_tac (HOL_cs addIs [less_trans]) 1); -qed "less_leq_less"; - goal Arith.thy "(A::nat) <= B --> C <= D --> A + C <= B + D"; by (rtac impI 1); by (rtac impI 1); @@ -211,23 +206,12 @@ by (asm_simp_tac arith_ss 1); qed "unzero_less"; -(* Duplicate of earlier lemma! *) -goal Arith.thy "x<(y::nat) --> y<=z --> x<(z::nat)"; - by (rtac impI 1); by (rtac impI 1); - by (dtac le_imp_less_or_eq 1); - by (fast_tac (HOL_cs addIs [less_trans]) 1); -qed "less_leq_less"; - -goal Arith.thy "(Suc(n) <= Suc(m)) = (n <= m)"; - by (simp_tac (arith_ss addsimps [le_eq_less_or_eq]) 1); -qed "succ_leq_mono"; - (* Odd proof. Why do induction? *) goal Arith.thy "((x::nat) = y + z) --> (y <= x)"; by (nat_ind_tac "y" 1); by (simp_tac arith_ss 1); by (simp_tac (arith_ss addsimps - [succ_leq_mono, le_refl RS (leq_add_leq RS mp)]) 1); + [Suc_le_mono, le_refl RS (leq_add_leq RS mp)]) 1); qed "plus_leq_lem"; (* Lists *)