diff -r b93cc55cb7ab -r df6b3bd14dcb ex/SList.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/SList.ML Fri Dec 02 16:09:49 1994 +0100 @@ -0,0 +1,397 @@ +(* Title: HOL/ex/SList.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1993 University of Cambridge + +Definition of type 'a list by a least fixed point +*) + +open SList; + +val list_con_defs = [NIL_def, CONS_def]; + +goal SList.thy "list(A) = {Numb(0)} <+> (A <*> list(A))"; +let val rew = rewrite_rule list_con_defs in +by (fast_tac (univ_cs addSIs (equalityI :: map rew list.intrs) + addEs [rew list.elim]) 1) +end; +qed "list_unfold"; + +(*This justifies using list in other recursive type definitions*) +goalw SList.thy list.defs "!!A B. A<=B ==> list(A) <= list(B)"; +by (rtac lfp_mono 1); +by (REPEAT (ares_tac basic_monos 1)); +qed "list_mono"; + +(*Type checking -- list creates well-founded sets*) +goalw SList.thy (list_con_defs @ list.defs) "list(sexp) <= sexp"; +by (rtac lfp_lowerbound 1); +by (fast_tac (univ_cs addIs sexp.intrs@[sexp_In0I,sexp_In1I]) 1); +qed "list_sexp"; + +(* A <= sexp ==> list(A) <= sexp *) +val list_subset_sexp = standard ([list_mono, list_sexp] MRS subset_trans); + +(*Induction for the type 'a list *) +val prems = goalw SList.thy [Nil_def,Cons_def] + "[| P(Nil); \ +\ !!x xs. P(xs) ==> P(x # xs) |] ==> P(l)"; +by (rtac (Rep_list_inverse RS subst) 1); (*types force good instantiation*) +by (rtac (Rep_list RS list.induct) 1); +by (REPEAT (ares_tac prems 1 + ORELSE eresolve_tac [rangeE, ssubst, Abs_list_inverse RS subst] 1)); +qed "list_induct"; + +(*Perform induction on xs. *) +fun list_ind_tac a M = + EVERY [res_inst_tac [("l",a)] list_induct M, + rename_last_tac a ["1"] (M+1)]; + +(*** Isomorphisms ***) + +goal SList.thy "inj(Rep_list)"; +by (rtac inj_inverseI 1); +by (rtac Rep_list_inverse 1); +qed "inj_Rep_list"; + +goal SList.thy "inj_onto(Abs_list,list(range(Leaf)))"; +by (rtac inj_onto_inverseI 1); +by (etac Abs_list_inverse 1); +qed "inj_onto_Abs_list"; + +(** Distinctness of constructors **) + +goalw SList.thy list_con_defs "CONS(M,N) ~= NIL"; +by (rtac In1_not_In0 1); +qed "CONS_not_NIL"; +val NIL_not_CONS = standard (CONS_not_NIL RS not_sym); + +val CONS_neq_NIL = standard (CONS_not_NIL RS notE); +val NIL_neq_CONS = sym RS CONS_neq_NIL; + +goalw SList.thy [Nil_def,Cons_def] "x # xs ~= Nil"; +by (rtac (CONS_not_NIL RS (inj_onto_Abs_list RS inj_onto_contraD)) 1); +by (REPEAT (resolve_tac (list.intrs @ [rangeI, Rep_list]) 1)); +qed "Cons_not_Nil"; + +val Nil_not_Cons = standard (Cons_not_Nil RS not_sym); + +val Cons_neq_Nil = standard (Cons_not_Nil RS notE); +val Nil_neq_Cons = sym RS Cons_neq_Nil; + +(** Injectiveness of CONS and Cons **) + +goalw SList.thy [CONS_def] "(CONS(K,M)=CONS(L,N)) = (K=L & M=N)"; +by (fast_tac (HOL_cs addSEs [Scons_inject, make_elim In1_inject]) 1); +qed "CONS_CONS_eq"; + +val CONS_inject = standard (CONS_CONS_eq RS iffD1 RS conjE); + +(*For reasoning about abstract list constructors*) +val list_cs = set_cs addIs [Rep_list] @ list.intrs + addSEs [CONS_neq_NIL,NIL_neq_CONS,CONS_inject] + addSDs [inj_onto_Abs_list RS inj_ontoD, + inj_Rep_list RS injD, Leaf_inject]; + +goalw SList.thy [Cons_def] "(x#xs=y#ys) = (x=y & xs=ys)"; +by (fast_tac list_cs 1); +qed "Cons_Cons_eq"; +val Cons_inject = standard (Cons_Cons_eq RS iffD1 RS conjE); + +val [major] = goal SList.thy "CONS(M,N): list(A) ==> M: A & N: list(A)"; +by (rtac (major RS setup_induction) 1); +by (etac list.induct 1); +by (ALLGOALS (fast_tac list_cs)); +qed "CONS_D"; + +val prems = goalw SList.thy [CONS_def,In1_def] + "CONS(M,N): sexp ==> M: sexp & N: sexp"; +by (cut_facts_tac prems 1); +by (fast_tac (set_cs addSDs [Scons_D]) 1); +qed "sexp_CONS_D"; + + +(*Basic ss with constructors and their freeness*) +val list_free_simps = [Cons_not_Nil, Nil_not_Cons, Cons_Cons_eq, + CONS_not_NIL, NIL_not_CONS, CONS_CONS_eq] + @ list.intrs; +val list_free_ss = HOL_ss addsimps list_free_simps; + +goal SList.thy "!!N. N: list(A) ==> !M. N ~= CONS(M,N)"; +by (etac list.induct 1); +by (ALLGOALS (asm_simp_tac list_free_ss)); +qed "not_CONS_self"; + +goal SList.thy "!x. l ~= x#l"; +by (list_ind_tac "l" 1); +by (ALLGOALS (asm_simp_tac list_free_ss)); +qed "not_Cons_self"; + + +goal SList.thy "(xs ~= []) = (? y ys. xs = y#ys)"; +by(list_ind_tac "xs" 1); +by(simp_tac list_free_ss 1); +by(asm_simp_tac list_free_ss 1); +by(REPEAT(resolve_tac [exI,refl,conjI] 1)); +qed "neq_Nil_conv"; + +(** Conversion rules for List_case: case analysis operator **) + +goalw SList.thy [List_case_def,NIL_def] "List_case(c, h, NIL) = c"; +by (rtac Case_In0 1); +qed "List_case_NIL"; + +goalw SList.thy [List_case_def,CONS_def] "List_case(c, h, CONS(M,N)) = h(M,N)"; +by (simp_tac (HOL_ss addsimps [Split,Case_In1]) 1); +qed "List_case_CONS"; + +(*** List_rec -- by wf recursion on pred_sexp ***) + +(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not + hold if pred_sexp^+ were changed to pred_sexp. *) + +val List_rec_unfold = [List_rec_def, wf_pred_sexp RS wf_trancl] MRS def_wfrec + |> standard; + +(** pred_sexp lemmas **) + +goalw SList.thy [CONS_def,In1_def] + "!!M. [| M: sexp; N: sexp |] ==> : pred_sexp^+"; +by (asm_simp_tac pred_sexp_ss 1); +qed "pred_sexp_CONS_I1"; + +goalw SList.thy [CONS_def,In1_def] + "!!M. [| M: sexp; N: sexp |] ==> : pred_sexp^+"; +by (asm_simp_tac pred_sexp_ss 1); +qed "pred_sexp_CONS_I2"; + +val [prem] = goal SList.thy + " : pred_sexp^+ ==> \ +\ : pred_sexp^+ & : pred_sexp^+"; +by (rtac (prem RS (pred_sexp_subset_Sigma RS trancl_subset_Sigma RS + subsetD RS SigmaE2)) 1); +by (etac (sexp_CONS_D RS conjE) 1); +by (REPEAT (ares_tac [conjI, pred_sexp_CONS_I1, pred_sexp_CONS_I2, + prem RSN (2, trans_trancl RS transD)] 1)); +qed "pred_sexp_CONS_D"; + +(** Conversion rules for List_rec **) + +goal SList.thy "List_rec(NIL,c,h) = c"; +by (rtac (List_rec_unfold RS trans) 1); +by (simp_tac (HOL_ss addsimps [List_case_NIL]) 1); +qed "List_rec_NIL"; + +goal SList.thy "!!M. [| M: sexp; N: sexp |] ==> \ +\ List_rec(CONS(M,N), c, h) = h(M, N, List_rec(N,c,h))"; +by (rtac (List_rec_unfold RS trans) 1); +by (asm_simp_tac + (HOL_ss addsimps [List_case_CONS, list.CONS_I, pred_sexp_CONS_I2, + cut_apply])1); +qed "List_rec_CONS"; + +(*** list_rec -- by List_rec ***) + +val Rep_list_in_sexp = + [range_Leaf_subset_sexp RS list_subset_sexp, Rep_list] MRS subsetD; + +local + val list_rec_simps = list_free_simps @ + [List_rec_NIL, List_rec_CONS, + Abs_list_inverse, Rep_list_inverse, + Rep_list, rangeI, inj_Leaf, Inv_f_f, + sexp.LeafI, Rep_list_in_sexp] +in + val list_rec_Nil = prove_goalw SList.thy [list_rec_def, Nil_def] + "list_rec(Nil,c,h) = c" + (fn _=> [simp_tac (HOL_ss addsimps list_rec_simps) 1]); + + val list_rec_Cons = prove_goalw SList.thy [list_rec_def, Cons_def] + "list_rec(a#l, c, h) = h(a, l, list_rec(l,c,h))" + (fn _=> [simp_tac (HOL_ss addsimps list_rec_simps) 1]); +end; + +val list_simps = [List_rec_NIL, List_rec_CONS, + list_rec_Nil, list_rec_Cons]; +val list_ss = list_free_ss addsimps list_simps; + + +(*Type checking. Useful?*) +val major::A_subset_sexp::prems = goal SList.thy + "[| M: list(A); \ +\ A<=sexp; \ +\ c: C(NIL); \ +\ !!x y r. [| x: A; y: list(A); r: C(y) |] ==> h(x,y,r): C(CONS(x,y)) \ +\ |] ==> List_rec(M,c,h) : C(M :: 'a item)"; +val sexp_ListA_I = A_subset_sexp RS list_subset_sexp RS subsetD; +val sexp_A_I = A_subset_sexp RS subsetD; +by (rtac (major RS list.induct) 1); +by (ALLGOALS(asm_simp_tac (list_ss addsimps ([sexp_A_I,sexp_ListA_I]@prems)))); +qed "List_rec_type"; + +(** Generalized map functionals **) + +goalw SList.thy [Rep_map_def] "Rep_map(f,Nil) = NIL"; +by (rtac list_rec_Nil 1); +qed "Rep_map_Nil"; + +goalw SList.thy [Rep_map_def] + "Rep_map(f, x#xs) = CONS(f(x), Rep_map(f,xs))"; +by (rtac list_rec_Cons 1); +qed "Rep_map_Cons"; + +goalw SList.thy [Rep_map_def] "!!f. (!!x. f(x): A) ==> Rep_map(f,xs): list(A)"; +by (rtac list_induct 1); +by(ALLGOALS(asm_simp_tac list_ss)); +qed "Rep_map_type"; + +goalw SList.thy [Abs_map_def] "Abs_map(g,NIL) = Nil"; +by (rtac List_rec_NIL 1); +qed "Abs_map_NIL"; + +val prems = goalw SList.thy [Abs_map_def] + "[| M: sexp; N: sexp |] ==> \ +\ Abs_map(g, CONS(M,N)) = g(M) # Abs_map(g,N)"; +by (REPEAT (resolve_tac (List_rec_CONS::prems) 1)); +qed "Abs_map_CONS"; + +(*These 2 rules ease the use of primitive recursion. NOTE USE OF == *) +val [rew] = goal SList.thy + "[| !!xs. f(xs) == list_rec(xs,c,h) |] ==> f([]) = c"; +by (rewtac rew); +by (rtac list_rec_Nil 1); +qed "def_list_rec_Nil"; + +val [rew] = goal SList.thy + "[| !!xs. f(xs) == list_rec(xs,c,h) |] ==> f(x#xs) = h(x,xs,f(xs))"; +by (rewtac rew); +by (rtac list_rec_Cons 1); +qed "def_list_rec_Cons"; + +fun list_recs def = + [standard (def RS def_list_rec_Nil), + standard (def RS def_list_rec_Cons)]; + +(*** Unfolding the basic combinators ***) + +val [null_Nil,null_Cons] = list_recs null_def; +val [_,hd_Cons] = list_recs hd_def; +val [_,tl_Cons] = list_recs tl_def; +val [ttl_Nil,ttl_Cons] = list_recs ttl_def; +val [append_Nil,append_Cons] = list_recs append_def; +val [mem_Nil, mem_Cons] = list_recs mem_def; +val [map_Nil,map_Cons] = list_recs map_def; +val [list_case_Nil,list_case_Cons] = list_recs list_case_def; +val [filter_Nil,filter_Cons] = list_recs filter_def; +val [list_all_Nil,list_all_Cons] = list_recs list_all_def; + +val list_ss = arith_ss addsimps + [Cons_not_Nil, Nil_not_Cons, Cons_Cons_eq, + list_rec_Nil, list_rec_Cons, + null_Nil, null_Cons, hd_Cons, tl_Cons, ttl_Nil, ttl_Cons, + mem_Nil, mem_Cons, + list_case_Nil, list_case_Cons, + append_Nil, append_Cons, + map_Nil, map_Cons, + list_all_Nil, list_all_Cons, + filter_Nil, filter_Cons]; + + +(** @ - append **) + +goal SList.thy "(xs@ys)@zs = xs@(ys@zs)"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac list_ss)); +qed "append_assoc"; + +goal SList.thy "xs @ [] = xs"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac list_ss)); +qed "append_Nil2"; + +(** mem **) + +goal SList.thy "x mem (xs@ys) = (x mem xs | x mem ys)"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if])))); +qed "mem_append"; + +goal SList.thy "x mem [x:xs.P(x)] = (x mem xs & P(x))"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if])))); +qed "mem_filter"; + +(** list_all **) + +goal SList.thy "(Alls x:xs.True) = True"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac list_ss)); +qed "list_all_True"; + +goal SList.thy "list_all(p,xs@ys) = (list_all(p,xs) & list_all(p,ys))"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac list_ss)); +qed "list_all_conj"; + +goal SList.thy "(Alls x:xs.P(x)) = (!x. x mem xs --> P(x))"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if])))); +by(fast_tac HOL_cs 1); +qed "list_all_mem_conv"; + + +(** The functional "map" **) + +val map_simps = [Abs_map_NIL, Abs_map_CONS, + Rep_map_Nil, Rep_map_Cons, + map_Nil, map_Cons]; +val map_ss = list_free_ss addsimps map_simps; + +val [major,A_subset_sexp,minor] = goal SList.thy + "[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |] \ +\ ==> Rep_map(f, Abs_map(g,M)) = M"; +by (rtac (major RS list.induct) 1); +by (ALLGOALS (asm_simp_tac(map_ss addsimps [sexp_A_I,sexp_ListA_I,minor]))); +qed "Abs_map_inverse"; + +(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*) + +(** list_case **) + +goal SList.thy + "P(list_case(a,f,xs)) = ((xs=[] --> P(a)) & \ +\ (!y ys. xs=y#ys --> P(f(y,ys))))"; +by(list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac list_ss)); +by(fast_tac HOL_cs 1); +qed "expand_list_case"; + + +(** Additional mapping lemmas **) + +goal SList.thy "map(%x.x, xs) = xs"; +by (list_ind_tac "xs" 1); +by (ALLGOALS (asm_simp_tac map_ss)); +qed "map_ident"; + +goal SList.thy "map(f, xs@ys) = map(f,xs) @ map(f,ys)"; +by (list_ind_tac "xs" 1); +by (ALLGOALS (asm_simp_tac (map_ss addsimps [append_Nil,append_Cons]))); +qed "map_append"; + +goalw SList.thy [o_def] "map(f o g, xs) = map(f, map(g, xs))"; +by (list_ind_tac "xs" 1); +by (ALLGOALS (asm_simp_tac map_ss)); +qed "map_compose"; + +goal SList.thy "!!f. (!!x. f(x): sexp) ==> \ +\ Abs_map(g, Rep_map(f,xs)) = map(%t. g(f(t)), xs)"; +by (list_ind_tac "xs" 1); +by(ALLGOALS(asm_simp_tac(map_ss addsimps + [Rep_map_type,list_sexp RS subsetD]))); +qed "Abs_Rep_map"; + +val list_ss = list_ss addsimps + [mem_append, mem_filter, append_assoc, append_Nil2, map_ident, + list_all_True, list_all_conj]; +