diff -r 0bba840aa07c -r e7dcf3c07865 ex/PropLog.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/PropLog.thy Tue Aug 30 10:05:46 1994 +0200 @@ -0,0 +1,61 @@ +(* Title: HOL/ex/pl.thy + ID: $Id$ + Author: Tobias Nipkow + Copyright 1994 TU Muenchen + +Inductive definition of propositional logic. +*) + +PropLog = Finite + +datatype + 'a pl = false | var ('a) ("#_" [1000]) | "->" ('a pl,'a pl) (infixr 90) +consts + thms :: "'a pl set => 'a pl set" + "|-" :: "['a pl set, 'a pl] => bool" (infixl 50) + "|=" :: "['a pl set, 'a pl] => bool" (infixl 50) + eval2 :: "['a pl, 'a set] => bool" + eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) + hyps :: "['a pl, 'a set] => 'a pl set" + +translations + "H |- p" == "p : thms(H)" + +inductive "thms(H)" + intrs + H "p:H ==> H |- p" + K "H |- p->q->p" + S "H |- (p->q->r) -> (p->q) -> p->r" + DN "H |- ((p->false) -> false) -> p" + MP "[| H |- p->q; H |- p |] ==> H |- q" + +rules + + (** Proof theory for propositional logic + + axK_def "axK == {x . ? p q. x = p->q->p}" + axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" + axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" + + (*the use of subsets simplifies the proof of monotonicity*) + ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" + + thms_def + "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))" + + conseq_def "H |- p == p : thms(H)" +**) + sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" + + eval_def "tt[p] == eval2(p,tt)" + +primrec eval2 pl + eval2_false "eval2(false) = (%x.False)" + eval2_var "eval2(#v) = (%tt.v:tt)" + eval2_imp "eval2(p->q) = (%tt.eval2(p,tt)-->eval2(q,tt))" + +primrec hyps pl + hyps_false "hyps(false) = (%tt.{})" + hyps_var "hyps(#v) = (%tt.{if(v:tt, #v, #v->false)})" + hyps_imp "hyps(p->q) = (%tt.hyps(p,tt) Un hyps(q,tt))" + +end