diff -r 74bc51d20112 -r fb4fe9f8c3cd equalities.ML --- a/equalities.ML Wed May 25 12:25:40 1994 +0200 +++ b/equalities.ML Wed May 25 12:43:50 1994 +0200 @@ -1,7 +1,7 @@ (* Title: HOL/equalities ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1991 University of Cambridge + Copyright 1994 University of Cambridge Equalities involving union, intersection, inclusion, etc. *) @@ -10,7 +10,7 @@ val eq_cs = set_cs addSIs [equalityI]; -(** : **) +(** The membership relation, : **) goal Set.thy "x ~: {}"; by(fast_tac set_cs 1); @@ -164,9 +164,9 @@ by (fast_tac eq_cs 1); val Union_Un_distrib = result(); -goal Set.thy "Union(A Un B) = Union(A) Un Union(B)"; -by (fast_tac eq_cs 1); -val Union_Un_distrib = result(); +goal Set.thy "Union(A Int B) <= Union(A) Int Union(B)"; +by (fast_tac set_cs 1); +val Union_Int_subset = result(); val prems = goal Set.thy "(Union(C) Int A = {}) = (! B:C. B Int A = {})"; @@ -179,33 +179,7 @@ (** Unions and Intersections of Families **) -goal Set.thy "(UN x:A. B(x)) = Union({Y. ? x:A. Y=B(x)})"; -by (fast_tac eq_cs 1); -val UN_eq = result(); - -(*Look: it has an EXISTENTIAL quantifier*) -goal Set.thy "(INT x:A. B(x)) = Inter({Y. ? x:A. Y=B(x)})"; -by (fast_tac eq_cs 1); -val INT_eq = result(); - -goal Set.thy "A Int Union(B) = (UN C:B. A Int C)"; -by (fast_tac eq_cs 1); -val Int_Union = result(); - -(* Devlin, page 12: Union of a family of unions **) -goal Set.thy "(UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)"; -by (fast_tac eq_cs 1); -val Un_Union_image = result(); - -goal Set.thy "A Un Inter(B) = (INT C:B. A Un C)"; -by (fast_tac eq_cs 1); -val Un_Inter = result(); - -goal Set.thy "(INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)"; -by (best_tac eq_cs 1); -val Int_Inter_image = result(); - -(** Other identities about Unions and Intersections **) +(*Basic identities*) goal Set.thy "Union(range(f)) = (UN x.f(x))"; by (fast_tac eq_cs 1); @@ -223,9 +197,79 @@ by (fast_tac eq_cs 1); val Inter_image_eq = result(); +goal Set.thy "!!A. a: A ==> (UN y:A. c) = c"; +by (fast_tac eq_cs 1); +val UN_constant = result(); + +goal Set.thy "!!A. a: A ==> (INT y:A. c) = c"; +by (fast_tac eq_cs 1); +val INT_constant = result(); + goal Set.thy "(UN x.B) = B"; by (fast_tac eq_cs 1); -val constant_UN = result(); +val UN1_constant = result(); + +goal Set.thy "(INT x.B) = B"; +by (fast_tac eq_cs 1); +val INT1_constant = result(); + +goal Set.thy "(UN x:A. B(x)) = Union({Y. ? x:A. Y=B(x)})"; +by (fast_tac eq_cs 1); +val UN_eq = result(); + +(*Look: it has an EXISTENTIAL quantifier*) +goal Set.thy "(INT x:A. B(x)) = Inter({Y. ? x:A. Y=B(x)})"; +by (fast_tac eq_cs 1); +val INT_eq = result(); + +(*Distributive laws...*) + +goal Set.thy "A Int Union(B) = (UN C:B. A Int C)"; +by (fast_tac eq_cs 1); +val Int_Union = result(); + +(* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: + Union of a family of unions **) +goal Set.thy "(UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)"; +by (fast_tac eq_cs 1); +val Un_Union_image = result(); + +(*Equivalent version*) +goal Set.thy "(UN i:I. A(i) Un B(i)) = (UN i:I. A(i)) Un (UN i:I. B(i))"; +by (fast_tac eq_cs 1); +val UN_Un_distrib = result(); + +goal Set.thy "A Un Inter(B) = (INT C:B. A Un C)"; +by (fast_tac eq_cs 1); +val Un_Inter = result(); + +goal Set.thy "(INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)"; +by (best_tac eq_cs 1); +val Int_Inter_image = result(); + +(*Equivalent version*) +goal Set.thy "(INT i:I. A(i) Int B(i)) = (INT i:I. A(i)) Int (INT i:I. B(i))"; +by (fast_tac eq_cs 1); +val INT_Int_distrib = result(); + +(*Halmos, Naive Set Theory, page 35.*) +goal Set.thy "B Int (UN i:I. A(i)) = (UN i:I. B Int A(i))"; +by (fast_tac eq_cs 1); +val Int_UN_distrib = result(); + +goal Set.thy "B Un (INT i:I. A(i)) = (INT i:I. B Un A(i))"; +by (fast_tac eq_cs 1); +val Un_INT_distrib = result(); + +goal Set.thy + "(UN i:I. A(i)) Int (UN j:J. B(j)) = (UN i:I. UN j:J. A(i) Int B(j))"; +by (fast_tac eq_cs 1); +val Int_UN_distrib2 = result(); + +goal Set.thy + "(INT i:I. A(i)) Un (INT j:J. B(j)) = (INT i:I. INT j:J. A(i) Un B(j))"; +by (fast_tac eq_cs 1); +val Un_INT_distrib2 = result(); (** Simple properties of Diff -- set difference **) @@ -262,12 +306,11 @@ goal Set.thy "!!A. A<=B ==> A Un (B-A) = B"; by (fast_tac eq_cs 1); val Diff_partition = result(); -(* -goal Set.thy "!!A. [| A<=B; B<= C |] ==> (B - (C-A)) = A"; -by (cut_facts_tac prems 1); + +goal Set.thy "!!A. [| A<=B; B<= C |] ==> (B - (C - A)) = A :: 'a set"; by (fast_tac eq_cs 1); -val double_complement = result(); -*) +val double_diff = result(); + goal Set.thy "A - (B Un C) = (A-B) Int (A-C)"; by (fast_tac eq_cs 1); val Diff_Un = result(); @@ -280,7 +323,7 @@ [in_empty,in_insert,insert_subset, Int_absorb,Int_empty_left,Int_empty_right, Un_absorb,Un_empty_left,Un_empty_right, - constant_UN,image_empty, + UN1_constant,image_empty, Compl_disjoint,double_complement, Union_empty,Union_insert,empty_subsetI,subset_refl, Diff_cancel,empty_Diff,Diff_empty,Diff_disjoint];