diff -r d3d727449d7b -r fded09018308 ex/PL.ML --- a/ex/PL.ML Fri Jun 17 14:15:38 1994 +0200 +++ b/ex/PL.ML Fri Jun 17 14:16:50 1994 +0200 @@ -135,7 +135,7 @@ (** The function eval **) -val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp] @ PL0.simps; +val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp] @ PL0.pl.simps; goalw PL.thy [eval_def] "tt[false] = False"; by (simp_tac pl_ss 1); @@ -212,7 +212,7 @@ (*This formulation is required for strong induction hypotheses*) goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)"; by (rtac (expand_if RS iffD2) 1); -by(PL0.induct_tac "p" 1); +by(PL0.pl.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H]))); by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2, weaken_right, imp_false] @@ -249,7 +249,7 @@ (*For the case hyps(p,t)-insert(#v,Y) |- p; we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *) goal PL.thy "hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; -by (PL0.induct_tac "p" 1); +by (PL0.pl.induct_tac "p" 1); by (simp_tac pl_ss 1); by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); by (simp_tac pl_ss 1); @@ -259,7 +259,7 @@ (*For the case hyps(p,t)-insert(#v -> false,Y) |- p; we also have hyps(p,t)-{(#v)->false} <= hyps(p, insert(v,t)) *) goal PL.thy "hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; -by (PL0.induct_tac "p" 1); +by (PL0.pl.induct_tac "p" 1); by (simp_tac pl_ss 1); by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); by (simp_tac pl_ss 1); @@ -279,7 +279,7 @@ (*The set hyps(p,t) is finite, and elements have the form #v or #v->false; could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*) goal PL.thy "hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; -by (PL0.induct_tac "p" 1); +by (PL0.pl.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN' fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI]))); val hyps_finite = result();