# HG changeset patch # User nipkow # Date 764321311 -3600 # Node ID 385d51d74f7183bde49285ee9733cdb6b8e668c7 # Parent d9096849bd8efe9df8278377f76bdfb74990aad4 Used Datatype functor to define propositional logic terms. diff -r d9096849bd8e -r 385d51d74f71 ex/PL.ML --- a/ex/PL.ML Tue Mar 22 08:26:25 1994 +0100 +++ b/ex/PL.ML Tue Mar 22 08:28:31 1994 +0100 @@ -1,10 +1,9 @@ -(* Title: HOL/ex/prop-log.ML +(* Title: HOL/ex/pl.ML ID: $Id$ Author: Tobias Nipkow & Lawrence C Paulson - Copyright 1993 TU Muenchen & University of Cambridge + Copyright 1994 TU Muenchen & University of Cambridge -For ex/prop-log.thy. Inductive definition of propositional logic. -Soundness and completeness w.r.t. truth-tables. +Soundness and completeness of propositional logic w.r.t. truth-tables. Prove: If H|=p then G|=p where G:Fin(H) *) @@ -136,7 +135,8 @@ (** The function eval **) -val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp]; +val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp] + @ PL0.inject @ PL0.ineq; goalw PL.thy [eval_def] "tt[false] = False"; by (simp_tac pl_ss 1); @@ -213,8 +213,7 @@ (*This formulation is required for strong induction hypotheses*) goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)"; by (rtac (expand_if RS iffD2) 1); -by(res_inst_tac[("x","p")]spec 1); -by (rtac pl_ind 1); +by(PL0.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H]))); by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2, weaken_right, imp_false] @@ -250,25 +249,24 @@ (*For the case hyps(p,t)-insert(#v,Y) |- p; we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *) -goal PL.thy "!p.hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; +by (PL0.induct_tac "p" 1); by (simp_tac pl_ss 1); by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); -by (fast_tac (set_cs addSEs [sym RS var_neq_imp] addSDs [var_inject]) 1); by (simp_tac pl_ss 1); by (fast_tac set_cs 1); -val hyps_Diff = result() RS spec; +val hyps_Diff = result(); (*For the case hyps(p,t)-insert(#v -> false,Y) |- p; we also have hyps(p,t)-{(#v)->false} <= hyps(p, insert(v,t)) *) -goal PL.thy "!p.hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; +by (PL0.induct_tac "p" 1); by (simp_tac pl_ss 1); -by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); -by (fast_tac (set_cs addSEs [var_neq_imp, imp_inject] addSDs [var_inject]) 1); +by (simp_tac (pl_ss addsimps [insert_subset] + setloop (split_tac [expand_if])) 1); by (simp_tac pl_ss 1); by (fast_tac set_cs 1); -val hyps_insert = result() RS spec; +val hyps_insert = result(); (** Two lemmas for use with weaken_left **) @@ -282,11 +280,11 @@ (*The set hyps(p,t) is finite, and elements have the form #v or #v->false; could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*) -goal PL.thy "!p.hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; +by (PL0.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN' fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI]))); -val hyps_finite = result() RS spec; +val hyps_finite = result(); val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left; @@ -341,4 +339,3 @@ writeln"Reached end of file."; - diff -r d9096849bd8e -r 385d51d74f71 ex/PL.thy --- a/ex/PL.thy Tue Mar 22 08:26:25 1994 +0100 +++ b/ex/PL.thy Tue Mar 22 08:28:31 1994 +0100 @@ -1,24 +1,18 @@ -(* Title: HOL/ex/prop-log +(* Title: HOL/ex/pl.thy ID: $Id$ Author: Tobias Nipkow - Copyright 1991 University of Cambridge + Copyright 1994 TU Muenchen Inductive definition of propositional logic. - *) -PL = Finite + -types pl 1 -arities pl :: (term)term +PL = Finite + PL0 + consts - false :: "'a pl" - "->" :: "['a pl,'a pl] => 'a pl" (infixr 90) - var :: "'a => 'a pl" ("#_") - pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" axK,axS,axDN:: "'a pl set" ruleMP,thms :: "'a pl set => 'a pl set" "|-" :: "['a pl set, 'a pl] => bool" (infixl 50) "|=" :: "['a pl set, 'a pl] => bool" (infixl 50) + pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) hyps :: "['a pl, 'a set] => 'a pl set" rules @@ -39,17 +33,13 @@ sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" -pl_rec_var "pl_rec(#v,f,y,z) = f(v)" -pl_rec_false "pl_rec(false,f,y,z) = y" -pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" - -eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" + pl_rec_var "pl_rec(#v,f,y,z) = f(v)" + pl_rec_false "pl_rec(false,f,y,z) = y" + pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" -hyps_def - "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" + eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" -var_inject "(#v = #w) ==> v = w" -imp_inject "[| (p -> q) = (p' -> q'); [| p = p'; q = q' |] ==> R |] ==> R" -var_neq_imp "(#v = (p -> q)) ==> R" -pl_ind "[| P(false); !!v. P(#v); !!p q. P(p)-->P(q)-->P(p->q)|] ==> !t.P(t)" + hyps_def + "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" + end diff -r d9096849bd8e -r 385d51d74f71 ex/PL0.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/PL0.ML Tue Mar 22 08:28:31 1994 +0100 @@ -0,0 +1,12 @@ +(* Title: HOL/ex/pl0.ML + ID: $Id$ + Author: Tobias Nipkow + Copyright 1994 TU Muenchen + +Inductive definition of propositional logic formulae. +*) + +structure PL0 = DeclaredDatatype +(val base = PL0.thy + val data = "'a pl = false | var('a) | \"op->\"('a pl,'a pl)" +); diff -r d9096849bd8e -r 385d51d74f71 ex/PL0.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/PL0.thy Tue Mar 22 08:28:31 1994 +0100 @@ -0,0 +1,16 @@ +(* Title: HOL/ex/pl0.thy + ID: $Id$ + Author: Tobias Nipkow + Copyright 1994 TU Muenchen + +Syntax of propositional logic formulae. +*) + +PL0 = HOL + +types 'a pl +arities pl :: (term)term +consts + false :: "'a pl" + "->" :: "['a pl,'a pl] => 'a pl" (infixr 90) + var :: "'a => 'a pl" ("#_") +end diff -r d9096849bd8e -r 385d51d74f71 ex/pl.ML --- a/ex/pl.ML Tue Mar 22 08:26:25 1994 +0100 +++ b/ex/pl.ML Tue Mar 22 08:28:31 1994 +0100 @@ -1,10 +1,9 @@ -(* Title: HOL/ex/prop-log.ML +(* Title: HOL/ex/pl.ML ID: $Id$ Author: Tobias Nipkow & Lawrence C Paulson - Copyright 1993 TU Muenchen & University of Cambridge + Copyright 1994 TU Muenchen & University of Cambridge -For ex/prop-log.thy. Inductive definition of propositional logic. -Soundness and completeness w.r.t. truth-tables. +Soundness and completeness of propositional logic w.r.t. truth-tables. Prove: If H|=p then G|=p where G:Fin(H) *) @@ -136,7 +135,8 @@ (** The function eval **) -val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp]; +val pl_ss = set_ss addsimps [pl_rec_var,pl_rec_false,pl_rec_imp] + @ PL0.inject @ PL0.ineq; goalw PL.thy [eval_def] "tt[false] = False"; by (simp_tac pl_ss 1); @@ -213,8 +213,7 @@ (*This formulation is required for strong induction hypotheses*) goal PL.thy "hyps(p,tt) |- if(tt[p], p, p->false)"; by (rtac (expand_if RS iffD2) 1); -by(res_inst_tac[("x","p")]spec 1); -by (rtac pl_ind 1); +by(PL0.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss addsimps [conseq_I, conseq_H]))); by (fast_tac (set_cs addIs [weaken_left_Un1, weaken_left_Un2, weaken_right, imp_false] @@ -250,25 +249,24 @@ (*For the case hyps(p,t)-insert(#v,Y) |- p; we also have hyps(p,t)-{#v} <= hyps(p, t-{v}) *) -goal PL.thy "!p.hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p, t-{v}) <= insert((#v)->false, hyps(p,t)-{#v})"; +by (PL0.induct_tac "p" 1); by (simp_tac pl_ss 1); by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); -by (fast_tac (set_cs addSEs [sym RS var_neq_imp] addSDs [var_inject]) 1); by (simp_tac pl_ss 1); by (fast_tac set_cs 1); -val hyps_Diff = result() RS spec; +val hyps_Diff = result(); (*For the case hyps(p,t)-insert(#v -> false,Y) |- p; we also have hyps(p,t)-{(#v)->false} <= hyps(p, insert(v,t)) *) -goal PL.thy "!p.hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p, insert(v,t)) <= insert(#v, hyps(p,t)-{(#v)->false})"; +by (PL0.induct_tac "p" 1); by (simp_tac pl_ss 1); -by (simp_tac (pl_ss setloop (split_tac [expand_if])) 1); -by (fast_tac (set_cs addSEs [var_neq_imp, imp_inject] addSDs [var_inject]) 1); +by (simp_tac (pl_ss addsimps [insert_subset] + setloop (split_tac [expand_if])) 1); by (simp_tac pl_ss 1); by (fast_tac set_cs 1); -val hyps_insert = result() RS spec; +val hyps_insert = result(); (** Two lemmas for use with weaken_left **) @@ -282,11 +280,11 @@ (*The set hyps(p,t) is finite, and elements have the form #v or #v->false; could probably prove the stronger hyps(p,t) : Fin(hyps(p,{}) Un hyps(p,nat))*) -goal PL.thy "!p.hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; -by (rtac pl_ind 1); +goal PL.thy "hyps(p,t) : Fin(UN v:{x.True}. {#v, (#v)->false})"; +by (PL0.induct_tac "p" 1); by (ALLGOALS (simp_tac (pl_ss setloop (split_tac [expand_if])) THEN' fast_tac (set_cs addSIs [Fin_0I, Fin_insertI, Fin_UnI]))); -val hyps_finite = result() RS spec; +val hyps_finite = result(); val Diff_weaken_left = subset_refl RSN (2, Diff_mono) RS weaken_left; @@ -341,4 +339,3 @@ writeln"Reached end of file."; - diff -r d9096849bd8e -r 385d51d74f71 ex/pl.thy --- a/ex/pl.thy Tue Mar 22 08:26:25 1994 +0100 +++ b/ex/pl.thy Tue Mar 22 08:28:31 1994 +0100 @@ -1,24 +1,18 @@ -(* Title: HOL/ex/prop-log +(* Title: HOL/ex/pl.thy ID: $Id$ Author: Tobias Nipkow - Copyright 1991 University of Cambridge + Copyright 1994 TU Muenchen Inductive definition of propositional logic. - *) -PL = Finite + -types pl 1 -arities pl :: (term)term +PL = Finite + PL0 + consts - false :: "'a pl" - "->" :: "['a pl,'a pl] => 'a pl" (infixr 90) - var :: "'a => 'a pl" ("#_") - pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" axK,axS,axDN:: "'a pl set" ruleMP,thms :: "'a pl set => 'a pl set" "|-" :: "['a pl set, 'a pl] => bool" (infixl 50) "|=" :: "['a pl set, 'a pl] => bool" (infixl 50) + pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) hyps :: "['a pl, 'a set] => 'a pl set" rules @@ -39,17 +33,13 @@ sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" -pl_rec_var "pl_rec(#v,f,y,z) = f(v)" -pl_rec_false "pl_rec(false,f,y,z) = y" -pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" - -eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" + pl_rec_var "pl_rec(#v,f,y,z) = f(v)" + pl_rec_false "pl_rec(false,f,y,z) = y" + pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" -hyps_def - "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" + eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" -var_inject "(#v = #w) ==> v = w" -imp_inject "[| (p -> q) = (p' -> q'); [| p = p'; q = q' |] ==> R |] ==> R" -var_neq_imp "(#v = (p -> q)) ==> R" -pl_ind "[| P(false); !!v. P(#v); !!p q. P(p)-->P(q)-->P(p->q)|] ==> !t.P(t)" + hyps_def + "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" + end diff -r d9096849bd8e -r 385d51d74f71 ex/pl0.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/pl0.ML Tue Mar 22 08:28:31 1994 +0100 @@ -0,0 +1,12 @@ +(* Title: HOL/ex/pl0.ML + ID: $Id$ + Author: Tobias Nipkow + Copyright 1994 TU Muenchen + +Inductive definition of propositional logic formulae. +*) + +structure PL0 = DeclaredDatatype +(val base = PL0.thy + val data = "'a pl = false | var('a) | \"op->\"('a pl,'a pl)" +); diff -r d9096849bd8e -r 385d51d74f71 ex/pl0.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ex/pl0.thy Tue Mar 22 08:28:31 1994 +0100 @@ -0,0 +1,16 @@ +(* Title: HOL/ex/pl0.thy + ID: $Id$ + Author: Tobias Nipkow + Copyright 1994 TU Muenchen + +Syntax of propositional logic formulae. +*) + +PL0 = HOL + +types 'a pl +arities pl :: (term)term +consts + false :: "'a pl" + "->" :: "['a pl,'a pl] => 'a pl" (infixr 90) + var :: "'a => 'a pl" ("#_") +end