# HG changeset patch # User lcp # Date 778841814 -7200 # Node ID a06a2d930a035a93a7bd5facc94bc3ca9664a361 # Parent 4b7da5a895e7bf961b81da56cf2943ecc16e0864 HOL/ex/PropLog.thy: tidied diff -r 4b7da5a895e7 -r a06a2d930a03 ex/PropLog.thy --- a/ex/PropLog.thy Tue Sep 06 10:54:46 1994 +0200 +++ b/ex/PropLog.thy Tue Sep 06 10:56:54 1994 +0200 @@ -1,4 +1,4 @@ -(* Title: HOL/ex/pl.thy +(* Title: HOL/ex/PropLog.thy ID: $Id$ Author: Tobias Nipkow Copyright 1994 TU Muenchen @@ -28,24 +28,8 @@ DN "H |- ((p->false) -> false) -> p" MP "[| H |- p->q; H |- p |] ==> H |- q" -rules - - (** Proof theory for propositional logic - - axK_def "axK == {x . ? p q. x = p->q->p}" - axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" - axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" - - (*the use of subsets simplifies the proof of monotonicity*) - ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" - - thms_def - "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))" - - conseq_def "H |- p == p : thms(H)" -**) - sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" - +defs + sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" eval_def "tt[p] == eval2(p,tt)" primrec eval2 pl