# HG changeset patch # User lcp # Date 766920512 -7200 # Node ID acad709cad5de6f20beaaa9d71ea4bd63974c058 # Parent bea4ea9128385e6a3c8d1b0dd05c583315578eb9 tidied definitions and proofs diff -r bea4ea912838 -r acad709cad5d ex/NatSum.thy --- a/ex/NatSum.thy Thu Apr 21 11:13:22 1994 +0200 +++ b/ex/NatSum.thy Thu Apr 21 11:28:32 1994 +0200 @@ -7,7 +7,7 @@ *) NatSum = Arith + -consts sum :: "[nat=>nat, nat] => nat" -rules sum_0 "sum(f,0) = 0" - sum_Suc "sum(f,Suc(n)) = f(n) + sum(f,n)" +consts sum :: "[nat=>nat, nat] => nat" +rules sum_0 "sum(f,0) = 0" + sum_Suc "sum(f,Suc(n)) = f(n) + sum(f,n)" end diff -r bea4ea912838 -r acad709cad5d ex/natsum.thy --- a/ex/natsum.thy Thu Apr 21 11:13:22 1994 +0200 +++ b/ex/natsum.thy Thu Apr 21 11:28:32 1994 +0200 @@ -7,7 +7,7 @@ *) NatSum = Arith + -consts sum :: "[nat=>nat, nat] => nat" -rules sum_0 "sum(f,0) = 0" - sum_Suc "sum(f,Suc(n)) = f(n) + sum(f,n)" +consts sum :: "[nat=>nat, nat] => nat" +rules sum_0 "sum(f,0) = 0" + sum_Suc "sum(f,Suc(n)) = f(n) + sum(f,n)" end