12854
|
1 |
(* Title: isabelle/Bali/AxCompl.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: David von Oheimb
|
|
4 |
Copyright 1999 Technische Universitaet Muenchen
|
|
5 |
*)
|
|
6 |
|
|
7 |
header {*
|
|
8 |
Completeness proof for Axiomatic semantics of Java expressions and statements
|
|
9 |
*}
|
|
10 |
|
|
11 |
theory AxCompl = AxSem:
|
|
12 |
|
|
13 |
text {*
|
|
14 |
design issues:
|
|
15 |
\begin{itemize}
|
|
16 |
\item proof structured by Most General Formulas (-> Thomas Kleymann)
|
|
17 |
\end{itemize}
|
|
18 |
*}
|
|
19 |
section "set of not yet initialzed classes"
|
|
20 |
|
|
21 |
constdefs
|
|
22 |
|
|
23 |
nyinitcls :: "prog \<Rightarrow> state \<Rightarrow> qtname set"
|
|
24 |
"nyinitcls G s \<equiv> {C. is_class G C \<and> \<not> initd C s}"
|
|
25 |
|
|
26 |
lemma nyinitcls_subset_class: "nyinitcls G s \<subseteq> {C. is_class G C}"
|
|
27 |
apply (unfold nyinitcls_def)
|
|
28 |
apply fast
|
|
29 |
done
|
|
30 |
|
|
31 |
lemmas finite_nyinitcls [simp] =
|
|
32 |
finite_is_class [THEN nyinitcls_subset_class [THEN finite_subset], standard]
|
|
33 |
|
|
34 |
lemma card_nyinitcls_bound: "card (nyinitcls G s) \<le> card {C. is_class G C}"
|
|
35 |
apply (rule nyinitcls_subset_class [THEN finite_is_class [THEN card_mono]])
|
|
36 |
done
|
|
37 |
|
|
38 |
lemma nyinitcls_set_locals_cong [simp]:
|
|
39 |
"nyinitcls G (x,set_locals l s) = nyinitcls G (x,s)"
|
|
40 |
apply (unfold nyinitcls_def)
|
|
41 |
apply (simp (no_asm))
|
|
42 |
done
|
|
43 |
|
|
44 |
lemma nyinitcls_abrupt_cong [simp]: "nyinitcls G (f x, y) = nyinitcls G (x, y)"
|
|
45 |
apply (unfold nyinitcls_def)
|
|
46 |
apply (simp (no_asm))
|
|
47 |
done
|
|
48 |
|
|
49 |
lemma nyinitcls_abupd_cong [simp]:"!!s. nyinitcls G (abupd f s) = nyinitcls G s"
|
|
50 |
apply (unfold nyinitcls_def)
|
|
51 |
apply (simp (no_asm_simp) only: split_tupled_all)
|
|
52 |
apply (simp (no_asm))
|
|
53 |
done
|
|
54 |
|
|
55 |
lemma card_nyinitcls_abrupt_congE [elim!]:
|
|
56 |
"card (nyinitcls G (x, s)) \<le> n \<Longrightarrow> card (nyinitcls G (y, s)) \<le> n"
|
|
57 |
apply (unfold nyinitcls_def)
|
|
58 |
apply auto
|
|
59 |
done
|
|
60 |
|
|
61 |
lemma nyinitcls_new_xcpt_var [simp]:
|
|
62 |
"nyinitcls G (new_xcpt_var vn s) = nyinitcls G s"
|
|
63 |
apply (unfold nyinitcls_def)
|
|
64 |
apply (induct_tac "s")
|
|
65 |
apply (simp (no_asm))
|
|
66 |
done
|
|
67 |
|
|
68 |
lemma nyinitcls_init_lvars [simp]:
|
|
69 |
"nyinitcls G ((init_lvars G C sig mode a' pvs) s) = nyinitcls G s"
|
|
70 |
apply (induct_tac "s")
|
|
71 |
apply (simp (no_asm) add: init_lvars_def2 split add: split_if)
|
|
72 |
done
|
|
73 |
|
|
74 |
lemma nyinitcls_emptyD: "\<lbrakk>nyinitcls G s = {}; is_class G C\<rbrakk> \<Longrightarrow> initd C s"
|
|
75 |
apply (unfold nyinitcls_def)
|
|
76 |
apply fast
|
|
77 |
done
|
|
78 |
|
|
79 |
lemma card_Suc_lemma: "\<lbrakk>card (insert a A) \<le> Suc n; a\<notin>A; finite A\<rbrakk> \<Longrightarrow> card A \<le> n"
|
|
80 |
apply (rotate_tac 1)
|
|
81 |
apply clarsimp
|
|
82 |
done
|
|
83 |
|
|
84 |
lemma nyinitcls_le_SucD:
|
|
85 |
"\<lbrakk>card (nyinitcls G (x,s)) \<le> Suc n; \<not>inited C (globs s); class G C=Some y\<rbrakk> \<Longrightarrow>
|
|
86 |
card (nyinitcls G (x,init_class_obj G C s)) \<le> n"
|
|
87 |
apply (subgoal_tac
|
|
88 |
"nyinitcls G (x,s) = insert C (nyinitcls G (x,init_class_obj G C s))")
|
|
89 |
apply clarsimp
|
|
90 |
apply (erule thin_rl)
|
|
91 |
apply (rule card_Suc_lemma [OF _ _ finite_nyinitcls])
|
|
92 |
apply (auto dest!: not_initedD elim!:
|
|
93 |
simp add: nyinitcls_def inited_def split add: split_if_asm)
|
|
94 |
done
|
|
95 |
|
|
96 |
ML {* bind_thm("inited_gext'",permute_prems 0 1 (thm "inited_gext")) *}
|
|
97 |
|
|
98 |
lemma nyinitcls_gext: "snd s\<le>|snd s' \<Longrightarrow> nyinitcls G s' \<subseteq> nyinitcls G s"
|
|
99 |
apply (unfold nyinitcls_def)
|
|
100 |
apply (force dest!: inited_gext')
|
|
101 |
done
|
|
102 |
|
|
103 |
lemma card_nyinitcls_gext:
|
|
104 |
"\<lbrakk>snd s\<le>|snd s'; card (nyinitcls G s) \<le> n\<rbrakk>\<Longrightarrow> card (nyinitcls G s') \<le> n"
|
|
105 |
apply (rule le_trans)
|
|
106 |
apply (rule card_mono)
|
|
107 |
apply (rule finite_nyinitcls)
|
|
108 |
apply (erule nyinitcls_gext)
|
|
109 |
apply assumption
|
|
110 |
done
|
|
111 |
|
|
112 |
|
|
113 |
section "init-le"
|
|
114 |
|
|
115 |
constdefs
|
|
116 |
init_le :: "prog \<Rightarrow> nat \<Rightarrow> state \<Rightarrow> bool" ("_\<turnstile>init\<le>_" [51,51] 50)
|
|
117 |
"G\<turnstile>init\<le>n \<equiv> \<lambda>s. card (nyinitcls G s) \<le> n"
|
|
118 |
|
|
119 |
lemma init_le_def2 [simp]: "(G\<turnstile>init\<le>n) s = (card (nyinitcls G s)\<le>n)"
|
|
120 |
apply (unfold init_le_def)
|
|
121 |
apply auto
|
|
122 |
done
|
|
123 |
|
|
124 |
lemma All_init_leD: "\<forall>n::nat. G,A\<turnstile>{P \<and>. G\<turnstile>init\<le>n} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
|
|
125 |
apply (drule spec)
|
|
126 |
apply (erule conseq1)
|
|
127 |
apply clarsimp
|
|
128 |
apply (rule card_nyinitcls_bound)
|
|
129 |
done
|
|
130 |
|
|
131 |
section "Most General Triples and Formulas"
|
|
132 |
|
|
133 |
constdefs
|
|
134 |
|
|
135 |
remember_init_state :: "state assn" ("\<doteq>")
|
|
136 |
"\<doteq> \<equiv> \<lambda>Y s Z. s = Z"
|
|
137 |
|
|
138 |
lemma remember_init_state_def2 [simp]: "\<doteq> Y = op ="
|
|
139 |
apply (unfold remember_init_state_def)
|
|
140 |
apply (simp (no_asm))
|
|
141 |
done
|
|
142 |
|
|
143 |
consts
|
|
144 |
|
|
145 |
MGF ::"[state assn, term, prog] \<Rightarrow> state triple" ("{_} _\<succ> {_\<rightarrow>}"[3,65,3]62)
|
|
146 |
MGFn::"[nat , term, prog] \<Rightarrow> state triple" ("{=:_} _\<succ> {_\<rightarrow>}"[3,65,3]62)
|
|
147 |
|
|
148 |
defs
|
|
149 |
|
|
150 |
|
|
151 |
MGF_def:
|
|
152 |
"{P} t\<succ> {G\<rightarrow>} \<equiv> {P} t\<succ> {\<lambda>Y s' s. G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> (Y,s')}"
|
|
153 |
|
|
154 |
MGFn_def:
|
|
155 |
"{=:n} t\<succ> {G\<rightarrow>} \<equiv> {\<doteq> \<and>. G\<turnstile>init\<le>n} t\<succ> {G\<rightarrow>}"
|
|
156 |
|
|
157 |
(* unused *)
|
|
158 |
lemma MGF_valid: "G,{}\<Turnstile>{\<doteq>} t\<succ> {G\<rightarrow>}"
|
|
159 |
apply (unfold MGF_def)
|
|
160 |
apply (force dest!: evaln_eval simp add: ax_valids_def triple_valid_def2)
|
|
161 |
done
|
|
162 |
|
|
163 |
lemma MGF_res_eq_lemma [simp]:
|
|
164 |
"(\<forall>Y' Y s. Y = Y' \<and> P s \<longrightarrow> Q s) = (\<forall>s. P s \<longrightarrow> Q s)"
|
|
165 |
apply auto
|
|
166 |
done
|
|
167 |
|
|
168 |
lemma MGFn_def2:
|
|
169 |
"G,A\<turnstile>{=:n} t\<succ> {G\<rightarrow>} = G,A\<turnstile>{\<doteq> \<and>. G\<turnstile>init\<le>n}
|
|
170 |
t\<succ> {\<lambda>Y s' s. G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> (Y,s')}"
|
|
171 |
apply (unfold MGFn_def MGF_def)
|
|
172 |
apply fast
|
|
173 |
done
|
|
174 |
|
|
175 |
lemma MGF_MGFn_iff: "G,A\<turnstile>{\<doteq>} t\<succ> {G\<rightarrow>} = (\<forall>n. G,A\<turnstile>{=:n} t\<succ> {G\<rightarrow>})"
|
|
176 |
apply (simp (no_asm_use) add: MGFn_def2 MGF_def)
|
|
177 |
apply safe
|
|
178 |
apply (erule_tac [2] All_init_leD)
|
|
179 |
apply (erule conseq1)
|
|
180 |
apply clarsimp
|
|
181 |
done
|
|
182 |
|
|
183 |
lemma MGFnD:
|
|
184 |
"G,A\<turnstile>{=:n} t\<succ> {G\<rightarrow>} \<Longrightarrow>
|
|
185 |
G,A\<turnstile>{(\<lambda>Y' s' s. s' = s \<and> P s) \<and>. G\<turnstile>init\<le>n}
|
|
186 |
t\<succ> {(\<lambda>Y' s' s. G\<turnstile>s\<midarrow>t\<succ>\<rightarrow>(Y',s') \<and> P s) \<and>. G\<turnstile>init\<le>n}"
|
|
187 |
apply (unfold init_le_def)
|
|
188 |
apply (simp (no_asm_use) add: MGFn_def2)
|
|
189 |
apply (erule conseq12)
|
|
190 |
apply clarsimp
|
|
191 |
apply (erule (1) eval_gext [THEN card_nyinitcls_gext])
|
|
192 |
done
|
|
193 |
lemmas MGFnD' = MGFnD [of _ _ _ _ "\<lambda>x. True"]
|
|
194 |
|
|
195 |
lemma MGFNormalI: "G,A\<turnstile>{Normal \<doteq>} t\<succ> {G\<rightarrow>} \<Longrightarrow>
|
|
196 |
G,(A::state triple set)\<turnstile>{\<doteq>::state assn} t\<succ> {G\<rightarrow>}"
|
|
197 |
apply (unfold MGF_def)
|
|
198 |
apply (rule ax_Normal_cases)
|
|
199 |
apply (erule conseq1)
|
|
200 |
apply clarsimp
|
|
201 |
apply (rule ax_derivs.Abrupt [THEN conseq1])
|
|
202 |
apply (clarsimp simp add: Let_def)
|
|
203 |
done
|
|
204 |
|
|
205 |
lemma MGFNormalD: "G,A\<turnstile>{\<doteq>} t\<succ> {G\<rightarrow>} \<Longrightarrow> G,A\<turnstile>{Normal \<doteq>} t\<succ> {G\<rightarrow>}"
|
|
206 |
apply (unfold MGF_def)
|
|
207 |
apply (erule conseq1)
|
|
208 |
apply clarsimp
|
|
209 |
done
|
|
210 |
|
|
211 |
lemma MGFn_NormalI:
|
|
212 |
"G,(A::state triple set)\<turnstile>{Normal((\<lambda>Y' s' s. s'=s \<and> normal s) \<and>. G\<turnstile>init\<le>n)}t\<succ>
|
|
213 |
{\<lambda>Y s' s. G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> (Y,s')} \<Longrightarrow> G,A\<turnstile>{=:n}t\<succ>{G\<rightarrow>}"
|
|
214 |
apply (simp (no_asm_use) add: MGFn_def2)
|
|
215 |
apply (rule ax_Normal_cases)
|
|
216 |
apply (erule conseq1)
|
|
217 |
apply clarsimp
|
|
218 |
apply (rule ax_derivs.Abrupt [THEN conseq1])
|
|
219 |
apply (clarsimp simp add: Let_def)
|
|
220 |
done
|
|
221 |
|
|
222 |
lemma MGFn_free_wt:
|
|
223 |
"(\<exists>T L C. \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T)
|
|
224 |
\<longrightarrow> G,(A::state triple set)\<turnstile>{=:n} t\<succ> {G\<rightarrow>}
|
|
225 |
\<Longrightarrow> G,A\<turnstile>{=:n} t\<succ> {G\<rightarrow>}"
|
|
226 |
apply (rule MGFn_NormalI)
|
|
227 |
apply (rule ax_free_wt)
|
|
228 |
apply (auto elim: conseq12 simp add: MGFn_def MGF_def)
|
|
229 |
done
|
|
230 |
|
|
231 |
|
|
232 |
section "main lemmas"
|
|
233 |
|
|
234 |
declare fun_upd_apply [simp del]
|
|
235 |
declare splitI2 [rule del] (*prevents ugly renaming of state variables*)
|
|
236 |
|
|
237 |
ML_setup {*
|
|
238 |
Delsimprocs [eval_expr_proc, eval_var_proc, eval_exprs_proc, eval_stmt_proc]
|
|
239 |
*} (*prevents modifying rhs of MGF*)
|
|
240 |
ML {*
|
|
241 |
val eval_css = (claset() delrules [thm "eval.Abrupt"] addSIs (thms "eval.intros")
|
|
242 |
delrules[thm "eval.Expr", thm "eval.Init", thm "eval.Try"]
|
|
243 |
addIs [thm "eval.Expr", thm "eval.Init"]
|
|
244 |
addSEs[thm "eval.Try"] delrules[equalityCE],
|
|
245 |
simpset() addsimps [split_paired_all,Let_def]
|
|
246 |
addsimprocs [eval_expr_proc,eval_var_proc,eval_exprs_proc,eval_stmt_proc]);
|
|
247 |
val eval_Force_tac = force_tac eval_css;
|
|
248 |
|
|
249 |
val wt_prepare_tac = EVERY'[
|
|
250 |
rtac (thm "MGFn_free_wt"),
|
|
251 |
clarsimp_tac (claset() addSEs (thms "wt_elim_cases"), simpset())]
|
|
252 |
val compl_prepare_tac = EVERY'[rtac (thm "MGFn_NormalI"), Simp_tac]
|
|
253 |
val forw_hyp_tac = EVERY'[etac (thm "MGFnD'" RS thm "conseq12"), Clarsimp_tac]
|
|
254 |
val forw_hyp_eval_Force_tac =
|
|
255 |
EVERY'[TRY o rtac allI, forw_hyp_tac, eval_Force_tac]
|
|
256 |
*}
|
|
257 |
|
|
258 |
lemma MGFn_Init: "\<forall>m. Suc m\<le>n \<longrightarrow> (\<forall>t. G,A\<turnstile>{=:m} t\<succ> {G\<rightarrow>}) \<Longrightarrow>
|
|
259 |
G,(A::state triple set)\<turnstile>{=:n} In1r (Init C)\<succ> {G\<rightarrow>}"
|
|
260 |
apply (tactic "wt_prepare_tac 1")
|
|
261 |
(* requires is_class G C two times for nyinitcls *)
|
|
262 |
apply (tactic "compl_prepare_tac 1")
|
|
263 |
apply (rule_tac C = "initd C" in ax_cases)
|
|
264 |
apply (rule ax_derivs.Done [THEN conseq1])
|
|
265 |
apply (clarsimp intro!: init_done)
|
|
266 |
apply (rule_tac y = n in nat.exhaust, clarsimp)
|
|
267 |
apply (rule ax_impossible [THEN conseq1])
|
|
268 |
apply (force dest!: nyinitcls_emptyD)
|
|
269 |
apply clarsimp
|
|
270 |
apply (drule_tac x = "nat" in spec)
|
|
271 |
apply clarsimp
|
|
272 |
apply (rule_tac Q = " (\<lambda>Y s' (x,s) . G\<turnstile> (x,init_class_obj G C s) \<midarrow> (if C=Object then Skip else Init (super (the (class G C))))\<rightarrow> s' \<and> x=None \<and> \<not>inited C (globs s)) \<and>. G\<turnstile>init\<le>nat" in ax_derivs.Init)
|
|
273 |
apply simp
|
|
274 |
apply (rule_tac P' = "Normal ((\<lambda>Y s' s. s' = supd (init_class_obj G C) s \<and> normal s \<and> \<not> initd C s) \<and>. G\<turnstile>init\<le>nat) " in conseq1)
|
|
275 |
prefer 2
|
|
276 |
apply (force elim!: nyinitcls_le_SucD)
|
|
277 |
apply (simp split add: split_if, rule conjI, clarify)
|
|
278 |
apply (rule ax_derivs.Skip [THEN conseq1], tactic "eval_Force_tac 1")
|
|
279 |
apply clarify
|
|
280 |
apply (drule spec)
|
|
281 |
apply (erule MGFnD' [THEN conseq12])
|
|
282 |
apply (tactic "force_tac (claset(), simpset() addsimprocs[eval_stmt_proc]) 1")
|
|
283 |
apply (rule allI)
|
|
284 |
apply (drule spec)
|
|
285 |
apply (erule MGFnD' [THEN conseq12])
|
|
286 |
apply clarsimp
|
|
287 |
apply (tactic {* pair_tac "sa" 1 *})
|
|
288 |
apply (tactic"clarsimp_tac (claset(), simpset() addsimprocs[eval_stmt_proc]) 1")
|
|
289 |
apply (rule eval_Init, force+)
|
|
290 |
done
|
|
291 |
lemmas MGFn_InitD = MGFn_Init [THEN MGFnD, THEN ax_NormalD]
|
|
292 |
|
|
293 |
lemma MGFn_Call:
|
|
294 |
"\<lbrakk>\<forall>C sig. G,(A::state triple set)\<turnstile>{=:n} In1l (Methd C sig)\<succ> {G\<rightarrow>};
|
|
295 |
G,A\<turnstile>{=:n} In1l e\<succ> {G\<rightarrow>}; G,A\<turnstile>{=:n} In3 ps\<succ> {G\<rightarrow>}\<rbrakk> \<Longrightarrow>
|
|
296 |
G,A\<turnstile>{=:n} In1l ({statT,mode}e\<cdot>mn({pTs'}ps))\<succ> {G\<rightarrow>}"
|
|
297 |
apply (tactic "wt_prepare_tac 1") (* required for equating mode = invmode m e *)
|
|
298 |
apply (tactic "compl_prepare_tac 1")
|
|
299 |
apply (rule_tac R = "\<lambda>a'. (\<lambda>Y (x2,s2) (x,s) . x = None \<and> (\<exists>s1 pvs. G\<turnstile>Norm s \<midarrow>e-\<succ>a'\<rightarrow> s1 \<and> Y = In3 pvs \<and> G\<turnstile>s1 \<midarrow>ps\<doteq>\<succ>pvs\<rightarrow> (x2,s2))) \<and>. G\<turnstile>init\<le>n" in ax_derivs.Call)
|
|
300 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
301 |
apply safe
|
|
302 |
apply (erule_tac V = "All ?P" in thin_rl, tactic "forw_hyp_eval_Force_tac 1")
|
|
303 |
apply (drule spec, drule spec)
|
|
304 |
apply (erule MGFnD' [THEN conseq12])
|
|
305 |
apply (tactic "clarsimp_tac eval_css 1")
|
|
306 |
apply (erule (1) eval_Call)
|
|
307 |
apply (rule HOL.refl)
|
|
308 |
apply (simp (no_asm_simp))+
|
|
309 |
done
|
|
310 |
|
|
311 |
lemma MGF_altern: "G,A\<turnstile>{Normal (\<doteq> \<and>. p)} t\<succ> {G\<rightarrow>} =
|
|
312 |
G,A\<turnstile>{Normal ((\<lambda>Y s Z. \<forall>w s'. G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> (w,s') \<longrightarrow> (w,s') = Z) \<and>. p)}
|
|
313 |
t\<succ> {\<lambda>Y s Z. (Y,s) = Z}"
|
|
314 |
apply (unfold MGF_def)
|
|
315 |
apply (auto del: conjI elim!: conseq12)
|
|
316 |
apply (case_tac "\<exists>w s. G\<turnstile>Norm sa \<midarrow>t\<succ>\<rightarrow> (w,s) ")
|
|
317 |
apply (fast dest: unique_eval)
|
|
318 |
apply clarsimp
|
|
319 |
apply (erule thin_rl)
|
|
320 |
apply (erule thin_rl)
|
|
321 |
apply (drule split_paired_All [THEN subst])
|
|
322 |
apply (clarsimp elim!: state_not_single)
|
|
323 |
done
|
|
324 |
|
|
325 |
|
|
326 |
lemma MGFn_Loop:
|
|
327 |
"\<lbrakk>G,(A::state triple set)\<turnstile>{=:n} In1l expr\<succ> {G\<rightarrow>};G,A\<turnstile>{=:n} In1r stmnt\<succ> {G\<rightarrow>} \<rbrakk>
|
|
328 |
\<Longrightarrow>
|
|
329 |
G,A\<turnstile>{=:n} In1r (l\<bullet> While(expr) stmnt)\<succ> {G\<rightarrow>}"
|
|
330 |
apply (rule MGFn_NormalI, simp)
|
|
331 |
apply (rule_tac p2 = "\<lambda>s. card (nyinitcls G s) \<le> n" in
|
|
332 |
MGF_altern [unfolded MGF_def, THEN iffD2, THEN conseq1])
|
|
333 |
prefer 2
|
|
334 |
apply clarsimp
|
|
335 |
apply (rule_tac P' =
|
|
336 |
"((\<lambda>Y s Z. \<forall>w s'. G\<turnstile>s \<midarrow>In1r (l\<bullet> While(expr) stmnt) \<succ>\<rightarrow> (w,s') \<longrightarrow> (w,s') = Z)
|
|
337 |
\<and>. (\<lambda>s. card (nyinitcls G s) \<le> n))" in conseq12)
|
|
338 |
prefer 2
|
|
339 |
apply clarsimp
|
|
340 |
apply (tactic "smp_tac 1 1", erule_tac V = "All ?P" in thin_rl)
|
|
341 |
apply (rule_tac [2] P' = " (\<lambda>b s (Y',s') . (\<exists>s0. G\<turnstile>s0 \<midarrow>In1l expr\<succ>\<rightarrow> (b,s)) \<and> (if normal s \<and> the_Bool (the_In1 b) then (\<forall>s'' w s0. G\<turnstile>s \<midarrow>stmnt\<rightarrow> s'' \<and> G\<turnstile>(abupd (absorb (Cont l)) s'') \<midarrow>In1r (l\<bullet> While(expr) stmnt) \<succ>\<rightarrow> (w,s0) \<longrightarrow> (w,s0) = (Y',s')) else (\<diamondsuit>,s) = (Y',s'))) \<and>. G\<turnstile>init\<le>n" in polymorphic_Loop)
|
|
342 |
apply (force dest!: eval.Loop split add: split_if_asm)
|
|
343 |
prefer 2
|
|
344 |
apply (erule MGFnD' [THEN conseq12])
|
|
345 |
apply clarsimp
|
|
346 |
apply (erule_tac V = "card (nyinitcls G s') \<le> n" in thin_rl)
|
|
347 |
apply (tactic "eval_Force_tac 1")
|
|
348 |
apply (erule MGFnD' [THEN conseq12] , clarsimp)
|
|
349 |
apply (rule conjI, erule exI)
|
|
350 |
apply (tactic "clarsimp_tac eval_css 1")
|
|
351 |
apply (case_tac "a")
|
|
352 |
prefer 2
|
|
353 |
apply (clarsimp)
|
|
354 |
apply (clarsimp split add: split_if)
|
|
355 |
apply (rule conjI, (tactic {* force_tac (claset() addSDs [thm "eval.Loop"],
|
|
356 |
simpset() addsimps [split_paired_all] addsimprocs [eval_stmt_proc]) 1*})+)
|
|
357 |
done
|
|
358 |
|
|
359 |
lemma MGFn_lemma [rule_format (no_asm)]:
|
|
360 |
"\<forall>n C sig. G,(A::state triple set)\<turnstile>{=:n} In1l (Methd C sig)\<succ> {G\<rightarrow>} \<Longrightarrow>
|
|
361 |
\<forall>t. G,A\<turnstile>{=:n} t\<succ> {G\<rightarrow>}"
|
|
362 |
apply (rule full_nat_induct)
|
|
363 |
apply (rule allI)
|
|
364 |
apply (drule_tac x = n in spec)
|
|
365 |
apply (drule_tac psi = "All ?P" in asm_rl)
|
|
366 |
apply (subgoal_tac "\<forall>v e c es. G,A\<turnstile>{=:n} In2 v\<succ> {G\<rightarrow>} \<and> G,A\<turnstile>{=:n} In1l e\<succ> {G\<rightarrow>} \<and> G,A\<turnstile>{=:n} In1r c\<succ> {G\<rightarrow>} \<and> G,A\<turnstile>{=:n} In3 es\<succ> {G\<rightarrow>}")
|
|
367 |
apply (tactic "Clarify_tac 2")
|
|
368 |
apply (induct_tac "t")
|
|
369 |
apply (induct_tac "a")
|
|
370 |
apply fast+
|
|
371 |
apply (rule var_expr_stmt.induct)
|
|
372 |
(* 28 subgoals *)
|
|
373 |
prefer 14 apply fast (* Methd *)
|
|
374 |
prefer 13 apply (erule (2) MGFn_Call)
|
|
375 |
apply (erule_tac [!] V = "All ?P" in thin_rl) (* assumptions on Methd *)
|
|
376 |
apply (erule_tac [24] MGFn_Init)
|
|
377 |
prefer 19 apply (erule (1) MGFn_Loop)
|
|
378 |
apply (tactic "ALLGOALS compl_prepare_tac")
|
|
379 |
|
|
380 |
apply (rule ax_derivs.LVar [THEN conseq1], tactic "eval_Force_tac 1")
|
|
381 |
|
|
382 |
apply (rule ax_derivs.FVar)
|
|
383 |
apply (erule MGFn_InitD)
|
|
384 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
385 |
|
|
386 |
apply (rule ax_derivs.AVar)
|
|
387 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
388 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
389 |
|
|
390 |
apply (rule ax_derivs.NewC)
|
|
391 |
apply (erule MGFn_InitD [THEN conseq2])
|
|
392 |
apply (tactic "eval_Force_tac 1")
|
|
393 |
|
|
394 |
apply (rule_tac Q = "(\<lambda>Y' s' s. normal s \<and> G\<turnstile>s \<midarrow>In1r (init_comp_ty ty) \<succ>\<rightarrow> (Y',s')) \<and>. G\<turnstile>init\<le>n" in ax_derivs.NewA)
|
|
395 |
apply (simp add: init_comp_ty_def split add: split_if)
|
|
396 |
apply (rule conjI, clarsimp)
|
|
397 |
apply (erule MGFn_InitD [THEN conseq2])
|
|
398 |
apply (tactic "clarsimp_tac eval_css 1")
|
|
399 |
apply clarsimp
|
|
400 |
apply (rule ax_derivs.Skip [THEN conseq1], tactic "eval_Force_tac 1")
|
|
401 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
402 |
|
|
403 |
apply (erule MGFnD'[THEN conseq12,THEN ax_derivs.Cast],tactic"eval_Force_tac 1")
|
|
404 |
|
|
405 |
apply (erule MGFnD'[THEN conseq12,THEN ax_derivs.Inst],tactic"eval_Force_tac 1")
|
|
406 |
apply (rule ax_derivs.Lit [THEN conseq1], tactic "eval_Force_tac 1")
|
|
407 |
apply (rule ax_derivs.Super [THEN conseq1], tactic "eval_Force_tac 1")
|
|
408 |
apply (erule MGFnD'[THEN conseq12,THEN ax_derivs.Acc],tactic"eval_Force_tac 1")
|
|
409 |
|
|
410 |
apply (rule ax_derivs.Ass)
|
|
411 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
412 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
413 |
|
|
414 |
apply (rule ax_derivs.Cond)
|
|
415 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
416 |
apply (rule allI)
|
|
417 |
apply (rule ax_Normal_cases)
|
|
418 |
prefer 2
|
|
419 |
apply (rule ax_derivs.Abrupt [THEN conseq1], clarsimp simp add: Let_def)
|
|
420 |
apply (tactic "eval_Force_tac 1")
|
|
421 |
apply (case_tac "b")
|
|
422 |
apply (simp, tactic "forw_hyp_eval_Force_tac 1")
|
|
423 |
apply (simp, tactic "forw_hyp_eval_Force_tac 1")
|
|
424 |
|
|
425 |
apply (rule_tac Q = " (\<lambda>Y' s' s. normal s \<and> G\<turnstile>s \<midarrow>Init pid_field_type\<rightarrow> s') \<and>. G\<turnstile>init\<le>n" in ax_derivs.Body)
|
|
426 |
apply (erule MGFn_InitD [THEN conseq2])
|
|
427 |
apply (tactic "eval_Force_tac 1")
|
|
428 |
apply (tactic "forw_hyp_tac 1")
|
|
429 |
apply (tactic {* clarsimp_tac (eval_css delsimps2 [split_paired_all]) 1 *})
|
|
430 |
apply (erule (1) eval.Body)
|
|
431 |
|
|
432 |
apply (rule ax_derivs.Skip [THEN conseq1], tactic "eval_Force_tac 1")
|
|
433 |
|
|
434 |
apply (erule MGFnD'[THEN conseq12,THEN ax_derivs.Expr],tactic"eval_Force_tac 1")
|
|
435 |
|
|
436 |
apply (erule MGFnD' [THEN conseq12, THEN ax_derivs.Lab])
|
|
437 |
apply (tactic "clarsimp_tac eval_css 1")
|
|
438 |
|
|
439 |
apply (rule ax_derivs.Comp)
|
|
440 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
441 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
442 |
|
|
443 |
apply (rule ax_derivs.If)
|
|
444 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
445 |
apply (rule allI)
|
|
446 |
apply (rule ax_Normal_cases)
|
|
447 |
prefer 2
|
|
448 |
apply (rule ax_derivs.Abrupt [THEN conseq1], clarsimp simp add: Let_def)
|
|
449 |
apply (tactic "eval_Force_tac 1")
|
|
450 |
apply (case_tac "b")
|
|
451 |
apply (simp, tactic "forw_hyp_eval_Force_tac 1")
|
|
452 |
apply (simp, tactic "forw_hyp_eval_Force_tac 1")
|
|
453 |
|
|
454 |
apply (rule ax_derivs.Do [THEN conseq1])
|
|
455 |
apply (tactic {* force_tac (eval_css addsimps2 [thm "abupd_def2"]) 1 *})
|
|
456 |
|
|
457 |
apply (erule MGFnD' [THEN conseq12, THEN ax_derivs.Throw])
|
|
458 |
apply (tactic "clarsimp_tac eval_css 1")
|
|
459 |
|
|
460 |
apply (rule_tac Q = " (\<lambda>Y' s' s. normal s \<and> (\<exists>s''. G\<turnstile>s \<midarrow>In1r stmt1\<succ>\<rightarrow> (Y',s'') \<and> G\<turnstile>s'' \<midarrow>sxalloc\<rightarrow> s')) \<and>. G\<turnstile>init\<le>n" in ax_derivs.Try)
|
|
461 |
apply (tactic "eval_Force_tac 3")
|
|
462 |
apply (tactic "forw_hyp_eval_Force_tac 2")
|
|
463 |
apply (erule MGFnD [THEN ax_NormalD, THEN conseq2])
|
|
464 |
apply (tactic "clarsimp_tac eval_css 1")
|
|
465 |
apply (force elim: sxalloc_gext [THEN card_nyinitcls_gext])
|
|
466 |
|
|
467 |
apply (rule_tac Q = " (\<lambda>Y' s' s. normal s \<and> G\<turnstile>s \<midarrow>stmt1\<rightarrow> s') \<and>. G\<turnstile>init\<le>n" in ax_derivs.Fin)
|
|
468 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
469 |
apply (rule allI)
|
|
470 |
apply (tactic "forw_hyp_tac 1")
|
|
471 |
apply (tactic {* pair_tac "sb" 1 *})
|
|
472 |
apply (tactic"clarsimp_tac (claset(),simpset() addsimprocs [eval_stmt_proc]) 1")
|
|
473 |
apply (drule (1) eval.Fin)
|
|
474 |
apply clarsimp
|
|
475 |
|
|
476 |
apply (rule ax_derivs.Nil [THEN conseq1], tactic "eval_Force_tac 1")
|
|
477 |
|
|
478 |
apply (rule ax_derivs.Cons)
|
|
479 |
apply (erule MGFnD [THEN ax_NormalD])
|
|
480 |
apply (tactic "forw_hyp_eval_Force_tac 1")
|
|
481 |
done
|
|
482 |
|
|
483 |
lemma MGF_asm: "\<forall>C sig. is_methd G C sig \<longrightarrow> G,A\<turnstile>{\<doteq>} In1l (Methd C sig)\<succ> {G\<rightarrow>} \<Longrightarrow>
|
|
484 |
G,(A::state triple set)\<turnstile>{\<doteq>} t\<succ> {G\<rightarrow>}"
|
|
485 |
apply (simp (no_asm_use) add: MGF_MGFn_iff)
|
|
486 |
apply (rule allI)
|
|
487 |
apply (rule MGFn_lemma)
|
|
488 |
apply (intro strip)
|
|
489 |
apply (rule MGFn_free_wt)
|
|
490 |
apply (force dest: wt_Methd_is_methd)
|
|
491 |
done
|
|
492 |
|
|
493 |
declare splitI2 [intro!]
|
|
494 |
ML_setup {*
|
|
495 |
Addsimprocs [ eval_expr_proc, eval_var_proc, eval_exprs_proc, eval_stmt_proc]
|
|
496 |
*}
|
|
497 |
|
|
498 |
|
|
499 |
section "nested version"
|
|
500 |
|
|
501 |
lemma nesting_lemma' [rule_format (no_asm)]: "[| !!A ts. ts <= A ==> P A ts;
|
|
502 |
!!A pn. !b:bdy pn. P (insert (mgf_call pn) A) {mgf b} ==> P A {mgf_call pn};
|
|
503 |
!!A t. !pn:U. P A {mgf_call pn} ==> P A {mgf t};
|
|
504 |
finite U; uA = mgf_call`U |] ==>
|
|
505 |
!A. A <= uA --> n <= card uA --> card A = card uA - n --> (!t. P A {mgf t})"
|
|
506 |
proof -
|
|
507 |
assume ax_derivs_asm: "!!A ts. ts <= A ==> P A ts"
|
|
508 |
assume MGF_nested_Methd: "!!A pn. !b:bdy pn. P (insert (mgf_call pn) A)
|
|
509 |
{mgf b} ==> P A {mgf_call pn}"
|
|
510 |
assume MGF_asm: "!!A t. !pn:U. P A {mgf_call pn} ==> P A {mgf t}"
|
|
511 |
assume "finite U" "uA = mgf_call`U"
|
|
512 |
then show ?thesis
|
|
513 |
apply -
|
|
514 |
apply (induct_tac "n")
|
|
515 |
apply (tactic "ALLGOALS Clarsimp_tac")
|
|
516 |
apply (tactic "dtac (permute_prems 0 1 card_seteq) 1")
|
|
517 |
apply simp
|
|
518 |
apply (erule finite_imageI)
|
|
519 |
apply (simp add: MGF_asm ax_derivs_asm)
|
|
520 |
apply (rule MGF_asm)
|
|
521 |
apply (rule ballI)
|
|
522 |
apply (case_tac "mgf_call pn : A")
|
|
523 |
apply (fast intro: ax_derivs_asm)
|
|
524 |
apply (rule MGF_nested_Methd)
|
|
525 |
apply (rule ballI)
|
|
526 |
apply (drule spec, erule impE, erule_tac [2] impE, erule_tac [3] impE,
|
|
527 |
erule_tac [4] spec)
|
|
528 |
apply fast
|
|
529 |
apply (erule Suc_leD)
|
|
530 |
apply (drule finite_subset)
|
|
531 |
apply (erule finite_imageI)
|
|
532 |
apply auto
|
|
533 |
apply arith
|
|
534 |
done
|
|
535 |
qed
|
|
536 |
|
|
537 |
lemma nesting_lemma [rule_format (no_asm)]: "[| !!A ts. ts <= A ==> P A ts;
|
|
538 |
!!A pn. !b:bdy pn. P (insert (mgf (f pn)) A) {mgf b} ==> P A {mgf (f pn)};
|
|
539 |
!!A t. !pn:U. P A {mgf (f pn)} ==> P A {mgf t};
|
|
540 |
finite U |] ==> P {} {mgf t}"
|
|
541 |
proof -
|
|
542 |
assume 2: "!!A pn. !b:bdy pn. P (insert (mgf (f pn)) A) {mgf b} ==> P A {mgf (f pn)}"
|
|
543 |
assume 3: "!!A t. !pn:U. P A {mgf (f pn)} ==> P A {mgf t}"
|
|
544 |
assume "!!A ts. ts <= A ==> P A ts" "finite U"
|
|
545 |
then show ?thesis
|
|
546 |
apply -
|
|
547 |
apply (rule_tac mgf = "mgf" in nesting_lemma')
|
|
548 |
apply (erule_tac [2] 2)
|
|
549 |
apply (rule_tac [2] 3)
|
|
550 |
apply (rule_tac [6] le_refl)
|
|
551 |
apply auto
|
|
552 |
done
|
|
553 |
qed
|
|
554 |
|
|
555 |
lemma MGF_nested_Methd: "\<lbrakk>
|
|
556 |
G,insert ({Normal \<doteq>} In1l (Methd C sig) \<succ>{G\<rightarrow>}) A\<turnstile>
|
|
557 |
{Normal \<doteq>} In1l (body G C sig) \<succ>{G\<rightarrow>}
|
|
558 |
\<rbrakk> \<Longrightarrow> G,A\<turnstile>{Normal \<doteq>} In1l (Methd C sig) \<succ>{G\<rightarrow>}"
|
|
559 |
apply (unfold MGF_def)
|
|
560 |
apply (rule ax_MethdN)
|
|
561 |
apply (erule conseq2)
|
|
562 |
apply clarsimp
|
|
563 |
apply (erule MethdI)
|
|
564 |
done
|
|
565 |
|
|
566 |
lemma MGF_deriv: "ws_prog G \<Longrightarrow> G,({}::state triple set)\<turnstile>{\<doteq>} t\<succ> {G\<rightarrow>}"
|
|
567 |
apply (rule MGFNormalI)
|
|
568 |
apply (rule_tac mgf = "\<lambda>t. {Normal \<doteq>} t\<succ> {G\<rightarrow>}" and
|
|
569 |
bdy = "\<lambda> (C,sig) .{In1l (body G C sig) }" and
|
|
570 |
f = "\<lambda> (C,sig) . In1l (Methd C sig) " in nesting_lemma)
|
|
571 |
apply (erule ax_derivs.asm)
|
|
572 |
apply (clarsimp simp add: split_tupled_all)
|
|
573 |
apply (erule MGF_nested_Methd)
|
|
574 |
apply (erule_tac [2] finite_is_methd)
|
|
575 |
apply (rule MGF_asm [THEN MGFNormalD])
|
|
576 |
apply clarify
|
|
577 |
apply (rule MGFNormalI)
|
|
578 |
apply force
|
|
579 |
done
|
|
580 |
|
|
581 |
|
|
582 |
section "simultaneous version"
|
|
583 |
|
|
584 |
lemma MGF_simult_Methd_lemma: "finite ms \<Longrightarrow>
|
|
585 |
G,A\<union> (\<lambda>(C,sig). {Normal \<doteq>} In1l (Methd C sig)\<succ> {G\<rightarrow>}) ` ms
|
|
586 |
|\<turnstile>(\<lambda>(C,sig). {Normal \<doteq>} In1l (body G C sig)\<succ> {G\<rightarrow>}) ` ms \<Longrightarrow>
|
|
587 |
G,A|\<turnstile>(\<lambda>(C,sig). {Normal \<doteq>} In1l (Methd C sig)\<succ> {G\<rightarrow>}) ` ms"
|
|
588 |
apply (unfold MGF_def)
|
|
589 |
apply (rule ax_derivs.Methd [unfolded mtriples_def])
|
|
590 |
apply (erule ax_finite_pointwise)
|
|
591 |
prefer 2
|
|
592 |
apply (rule ax_derivs.asm)
|
|
593 |
apply fast
|
|
594 |
apply clarsimp
|
|
595 |
apply (rule conseq2)
|
|
596 |
apply (erule (1) ax_methods_spec)
|
|
597 |
apply clarsimp
|
|
598 |
apply (erule eval_Methd)
|
|
599 |
done
|
|
600 |
|
|
601 |
lemma MGF_simult_Methd: "ws_prog G \<Longrightarrow>
|
|
602 |
G,({}::state triple set)|\<turnstile>(\<lambda>(C,sig). {Normal \<doteq>} In1l (Methd C sig)\<succ> {G\<rightarrow>})
|
|
603 |
` Collect (split (is_methd G)) "
|
|
604 |
apply (frule finite_is_methd)
|
|
605 |
apply (rule MGF_simult_Methd_lemma)
|
|
606 |
apply assumption
|
|
607 |
apply (erule ax_finite_pointwise)
|
|
608 |
prefer 2
|
|
609 |
apply (rule ax_derivs.asm)
|
|
610 |
apply blast
|
|
611 |
apply clarsimp
|
|
612 |
apply (rule MGF_asm [THEN MGFNormalD])
|
|
613 |
apply clarify
|
|
614 |
apply (rule MGFNormalI)
|
|
615 |
apply force
|
|
616 |
done
|
|
617 |
|
|
618 |
lemma MGF_deriv: "ws_prog G \<Longrightarrow> G,({}::state triple set)\<turnstile>{\<doteq>} t\<succ> {G\<rightarrow>}"
|
|
619 |
apply (rule MGF_asm)
|
|
620 |
apply (intro strip)
|
|
621 |
apply (rule MGFNormalI)
|
|
622 |
apply (rule ax_derivs.weaken)
|
|
623 |
apply (erule MGF_simult_Methd)
|
|
624 |
apply force
|
|
625 |
done
|
|
626 |
|
|
627 |
|
|
628 |
section "corollaries"
|
|
629 |
|
|
630 |
lemma MGF_complete: "G,{}\<Turnstile>{P} t\<succ> {Q} \<Longrightarrow> G,({}::state triple set)\<turnstile>{\<doteq>} t\<succ> {G\<rightarrow>} \<Longrightarrow>
|
|
631 |
G,({}::state triple set)\<turnstile>{P::state assn} t\<succ> {Q}"
|
|
632 |
apply (rule ax_no_hazard)
|
|
633 |
apply (unfold MGF_def)
|
|
634 |
apply (erule conseq12)
|
|
635 |
apply (simp (no_asm_use) add: ax_valids_def triple_valid_def)
|
|
636 |
apply (fast dest!: eval_evaln)
|
|
637 |
done
|
|
638 |
|
|
639 |
theorem ax_complete: "ws_prog G \<Longrightarrow>
|
|
640 |
G,{}\<Turnstile>{P::state assn} t\<succ> {Q} \<Longrightarrow> G,({}::state triple set)\<turnstile>{P} t\<succ> {Q}"
|
|
641 |
apply (erule MGF_complete)
|
|
642 |
apply (erule MGF_deriv)
|
|
643 |
done
|
|
644 |
|
|
645 |
end
|