516
|
1 |
(* Title: ZF/add_ind_def.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Fixedpoint definition module -- for Inductive/Coinductive Definitions
|
|
7 |
|
|
8 |
Features:
|
|
9 |
* least or greatest fixedpoints
|
|
10 |
* user-specified product and sum constructions
|
|
11 |
* mutually recursive definitions
|
|
12 |
* definitions involving arbitrary monotone operators
|
|
13 |
* automatically proves introduction and elimination rules
|
|
14 |
|
|
15 |
The recursive sets must *already* be declared as constants in parent theory!
|
|
16 |
|
|
17 |
Introduction rules have the form
|
|
18 |
[| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
|
|
19 |
where M is some monotone operator (usually the identity)
|
|
20 |
P(x) is any (non-conjunctive) side condition on the free variables
|
|
21 |
ti, t are any terms
|
|
22 |
Sj, Sk are two of the sets being defined in mutual recursion
|
|
23 |
|
|
24 |
Sums are used only for mutual recursion;
|
|
25 |
Products are used only to derive "streamlined" induction rules for relations
|
|
26 |
*)
|
|
27 |
|
|
28 |
signature FP = (** Description of a fixed point operator **)
|
|
29 |
sig
|
|
30 |
val oper : term (*fixed point operator*)
|
|
31 |
val bnd_mono : term (*monotonicity predicate*)
|
|
32 |
val bnd_monoI : thm (*intro rule for bnd_mono*)
|
|
33 |
val subs : thm (*subset theorem for fp*)
|
|
34 |
val Tarski : thm (*Tarski's fixed point theorem*)
|
|
35 |
val induct : thm (*induction/coinduction rule*)
|
|
36 |
end;
|
|
37 |
|
|
38 |
signature PR = (** Description of a Cartesian product **)
|
|
39 |
sig
|
|
40 |
val sigma : term (*Cartesian product operator*)
|
|
41 |
val pair : term (*pairing operator*)
|
|
42 |
val split_const : term (*splitting operator*)
|
|
43 |
val fsplit_const : term (*splitting operator for formulae*)
|
|
44 |
val pair_iff : thm (*injectivity of pairing, using <->*)
|
|
45 |
val split_eq : thm (*equality rule for split*)
|
|
46 |
val fsplitI : thm (*intro rule for fsplit*)
|
|
47 |
val fsplitD : thm (*destruct rule for fsplit*)
|
|
48 |
val fsplitE : thm (*elim rule for fsplit*)
|
|
49 |
end;
|
|
50 |
|
|
51 |
signature SU = (** Description of a disjoint sum **)
|
|
52 |
sig
|
|
53 |
val sum : term (*disjoint sum operator*)
|
|
54 |
val inl : term (*left injection*)
|
|
55 |
val inr : term (*right injection*)
|
|
56 |
val elim : term (*case operator*)
|
|
57 |
val case_inl : thm (*inl equality rule for case*)
|
|
58 |
val case_inr : thm (*inr equality rule for case*)
|
|
59 |
val inl_iff : thm (*injectivity of inl, using <->*)
|
|
60 |
val inr_iff : thm (*injectivity of inr, using <->*)
|
|
61 |
val distinct : thm (*distinctness of inl, inr using <->*)
|
|
62 |
val distinct' : thm (*distinctness of inr, inl using <->*)
|
|
63 |
end;
|
|
64 |
|
|
65 |
signature ADD_INDUCTIVE_DEF =
|
|
66 |
sig
|
|
67 |
val add_fp_def_i : term list * term list * term list -> theory -> theory
|
|
68 |
val add_fp_def : (string*string) list * string list -> theory -> theory
|
|
69 |
val add_constructs_def :
|
|
70 |
string list * ((string*typ*mixfix) *
|
|
71 |
string * term list * term list) list list ->
|
|
72 |
theory -> theory
|
|
73 |
end;
|
|
74 |
|
|
75 |
|
|
76 |
|
|
77 |
(*Declares functions to add fixedpoint/constructor defs to a theory*)
|
|
78 |
functor Add_inductive_def_Fun
|
|
79 |
(structure Fp: FP and Pr : PR and Su : SU) : ADD_INDUCTIVE_DEF =
|
|
80 |
struct
|
|
81 |
open Logic Ind_Syntax;
|
|
82 |
|
|
83 |
(*internal version*)
|
|
84 |
fun add_fp_def_i (rec_tms, domts, intr_tms) thy =
|
|
85 |
let
|
|
86 |
val sign = sign_of thy;
|
|
87 |
|
|
88 |
(*recT and rec_params should agree for all mutually recursive components*)
|
|
89 |
val (Const(_,recT),rec_params) = strip_comb (hd rec_tms)
|
|
90 |
and rec_hds = map head_of rec_tms;
|
|
91 |
|
|
92 |
val rec_names = map (#1 o dest_Const) rec_hds;
|
|
93 |
|
|
94 |
val _ = assert_all Syntax.is_identifier rec_names
|
|
95 |
(fn a => "Name of recursive set not an identifier: " ^ a);
|
|
96 |
|
|
97 |
val _ = assert_all (is_some o lookup_const sign) rec_names
|
|
98 |
(fn a => "Recursive set not previously declared as constant: " ^ a);
|
|
99 |
|
|
100 |
local (*Checking the introduction rules*)
|
|
101 |
val intr_sets = map (#2 o rule_concl_msg sign) intr_tms;
|
|
102 |
fun intr_ok set =
|
|
103 |
case head_of set of Const(a,recT) => a mem rec_names | _ => false;
|
|
104 |
in
|
|
105 |
val _ = assert_all intr_ok intr_sets
|
|
106 |
(fn t => "Conclusion of rule does not name a recursive set: " ^
|
|
107 |
Sign.string_of_term sign t);
|
|
108 |
end;
|
|
109 |
|
|
110 |
val _ = assert_all is_Free rec_params
|
|
111 |
(fn t => "Param in recursion term not a free variable: " ^
|
|
112 |
Sign.string_of_term sign t);
|
|
113 |
|
|
114 |
(*** Construct the lfp definition ***)
|
|
115 |
val mk_variant = variant (foldr add_term_names (intr_tms,[]));
|
|
116 |
|
|
117 |
val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
|
|
118 |
|
|
119 |
fun dest_tprop (Const("Trueprop",_) $ P) = P
|
|
120 |
| dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^
|
|
121 |
Sign.string_of_term sign Q);
|
|
122 |
|
|
123 |
(*Makes a disjunct from an introduction rule*)
|
|
124 |
fun lfp_part intr = (*quantify over rule's free vars except parameters*)
|
|
125 |
let val prems = map dest_tprop (strip_imp_prems intr)
|
|
126 |
val _ = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds
|
|
127 |
val exfrees = term_frees intr \\ rec_params
|
|
128 |
val zeq = eq_const $ (Free(z',iT)) $ (#1 (rule_concl intr))
|
|
129 |
in foldr mk_exists (exfrees, fold_bal (app conj) (zeq::prems)) end;
|
|
130 |
|
|
131 |
val dom_sum = fold_bal (app Su.sum) domts;
|
|
132 |
|
|
133 |
(*The Part(A,h) terms -- compose injections to make h*)
|
|
134 |
fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
|
|
135 |
| mk_Part h = Part_const $ Free(X',iT) $ Abs(w',iT,h);
|
|
136 |
|
|
137 |
(*Access to balanced disjoint sums via injections*)
|
|
138 |
val parts =
|
|
139 |
map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0)
|
|
140 |
(length rec_tms));
|
|
141 |
|
|
142 |
(*replace each set by the corresponding Part(A,h)*)
|
|
143 |
val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms;
|
|
144 |
|
|
145 |
val lfp_abs = absfree(X', iT,
|
|
146 |
mk_Collect(z', dom_sum, fold_bal (app disj) part_intrs));
|
|
147 |
|
|
148 |
val lfp_rhs = Fp.oper $ dom_sum $ lfp_abs
|
|
149 |
|
|
150 |
val _ = seq (fn rec_hd => deny (rec_hd occs lfp_rhs)
|
|
151 |
"Illegal occurrence of recursion operator")
|
|
152 |
rec_hds;
|
|
153 |
|
|
154 |
(*** Make the new theory ***)
|
|
155 |
|
|
156 |
(*A key definition:
|
|
157 |
If no mutual recursion then it equals the one recursive set.
|
|
158 |
If mutual recursion then it differs from all the recursive sets. *)
|
|
159 |
val big_rec_name = space_implode "_" rec_names;
|
|
160 |
|
|
161 |
(*Big_rec... is the union of the mutually recursive sets*)
|
|
162 |
val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
|
|
163 |
|
|
164 |
(*The individual sets must already be declared*)
|
|
165 |
val axpairs = map mk_defpair
|
|
166 |
((big_rec_tm, lfp_rhs) ::
|
|
167 |
(case parts of
|
|
168 |
[_] => [] (*no mutual recursion*)
|
|
169 |
| _ => rec_tms ~~ (*define the sets as Parts*)
|
|
170 |
map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
|
|
171 |
|
567
|
172 |
in thy |> add_defs_i axpairs end
|
516
|
173 |
|
|
174 |
|
|
175 |
(*external, string-based version; needed?*)
|
|
176 |
fun add_fp_def (rec_doms, sintrs) thy =
|
|
177 |
let val sign = sign_of thy;
|
|
178 |
val rec_tms = map (readtm sign iT o fst) rec_doms
|
|
179 |
and domts = map (readtm sign iT o snd) rec_doms
|
|
180 |
val intr_tms = map (readtm sign propT) sintrs
|
|
181 |
in add_fp_def_i (rec_tms, domts, intr_tms) thy end
|
|
182 |
|
|
183 |
|
|
184 |
(*Expects the recursive sets to have been defined already.
|
|
185 |
con_ty_lists specifies the constructors in the form (name,prems,mixfix) *)
|
|
186 |
fun add_constructs_def (rec_names, con_ty_lists) thy =
|
|
187 |
let
|
|
188 |
val _ = writeln" Defining the constructor functions...";
|
|
189 |
val case_name = "f"; (*name for case variables*)
|
|
190 |
|
|
191 |
(** Define the constructors **)
|
|
192 |
|
|
193 |
(*The empty tuple is 0*)
|
|
194 |
fun mk_tuple [] = Const("0",iT)
|
|
195 |
| mk_tuple args = foldr1 (app Pr.pair) args;
|
|
196 |
|
|
197 |
fun mk_inject n k u = access_bal(ap Su.inl, ap Su.inr, u) n k;
|
|
198 |
|
|
199 |
val npart = length rec_names; (*total # of mutually recursive parts*)
|
|
200 |
|
|
201 |
(*Make constructor definition; kpart is # of this mutually recursive part*)
|
|
202 |
fun mk_con_defs (kpart, con_ty_list) =
|
|
203 |
let val ncon = length con_ty_list (*number of constructors*)
|
|
204 |
fun mk_def (((id,T,syn), name, args, prems), kcon) =
|
|
205 |
(*kcon is index of constructor*)
|
|
206 |
mk_defpair (list_comb (Const(name,T), args),
|
|
207 |
mk_inject npart kpart
|
|
208 |
(mk_inject ncon kcon (mk_tuple args)))
|
|
209 |
in map mk_def (con_ty_list ~~ (1 upto ncon)) end;
|
|
210 |
|
|
211 |
(** Define the case operator **)
|
|
212 |
|
|
213 |
(*Combine split terms using case; yields the case operator for one part*)
|
|
214 |
fun call_case case_list =
|
|
215 |
let fun call_f (free,args) =
|
|
216 |
ap_split Pr.split_const free (map (#2 o dest_Free) args)
|
|
217 |
in fold_bal (app Su.elim) (map call_f case_list) end;
|
|
218 |
|
|
219 |
(** Generating function variables for the case definition
|
|
220 |
Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
|
|
221 |
|
|
222 |
(*Treatment of a single constructor*)
|
|
223 |
fun add_case (((id,T,syn), name, args, prems), (opno,cases)) =
|
|
224 |
if Syntax.is_identifier id
|
|
225 |
then (opno,
|
|
226 |
(Free(case_name ^ "_" ^ id, T), args) :: cases)
|
|
227 |
else (opno+1,
|
|
228 |
(Free(case_name ^ "_op_" ^ string_of_int opno, T), args) ::
|
|
229 |
cases)
|
|
230 |
|
|
231 |
(*Treatment of a list of constructors, for one part*)
|
|
232 |
fun add_case_list (con_ty_list, (opno,case_lists)) =
|
|
233 |
let val (opno',case_list) = foldr add_case (con_ty_list, (opno,[]))
|
|
234 |
in (opno', case_list :: case_lists) end;
|
|
235 |
|
|
236 |
(*Treatment of all parts*)
|
|
237 |
val (_, case_lists) = foldr add_case_list (con_ty_lists, (1,[]));
|
|
238 |
|
|
239 |
val big_case_typ = flat (map (map (#2 o #1)) con_ty_lists) ---> (iT-->iT);
|
|
240 |
|
|
241 |
val big_rec_name = space_implode "_" rec_names;
|
|
242 |
|
|
243 |
val big_case_name = big_rec_name ^ "_case";
|
|
244 |
|
|
245 |
(*The list of all the function variables*)
|
|
246 |
val big_case_args = flat (map (map #1) case_lists);
|
|
247 |
|
|
248 |
val big_case_tm =
|
|
249 |
list_comb (Const(big_case_name, big_case_typ), big_case_args);
|
|
250 |
|
|
251 |
val big_case_def = mk_defpair
|
|
252 |
(big_case_tm, fold_bal (app Su.elim) (map call_case case_lists));
|
|
253 |
|
|
254 |
(** Build the new theory **)
|
|
255 |
|
|
256 |
val const_decs =
|
|
257 |
(big_case_name, big_case_typ, NoSyn) :: map #1 (flat con_ty_lists);
|
|
258 |
|
|
259 |
val axpairs =
|
|
260 |
big_case_def :: flat (map mk_con_defs ((1 upto npart) ~~ con_ty_lists))
|
|
261 |
|
567
|
262 |
in thy |> add_consts_i const_decs |> add_defs_i axpairs end;
|
516
|
263 |
end;
|