src/HOL/Complex/Complex.thy
author nipkow
Sat Sep 01 01:21:48 2007 +0200 (2007-09-01)
changeset 24506 020db6ec334a
parent 23477 f4b83f03cac9
child 24520 40b220403257
permissions -rw-r--r--
final(?) iteration of sgn saga.
paulson@13957
     1
(*  Title:       Complex.thy
paulson@14430
     2
    ID:      $Id$
paulson@13957
     3
    Author:      Jacques D. Fleuriot
paulson@13957
     4
    Copyright:   2001 University of Edinburgh
paulson@14387
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@13957
     6
*)
paulson@13957
     7
paulson@14377
     8
header {* Complex Numbers: Rectangular and Polar Representations *}
paulson@14373
     9
nipkow@15131
    10
theory Complex
huffman@22655
    11
imports "../Hyperreal/Transcendental"
nipkow@15131
    12
begin
paulson@13957
    13
paulson@14373
    14
datatype complex = Complex real real
paulson@13957
    15
huffman@23125
    16
consts Re :: "complex \<Rightarrow> real"
huffman@20557
    17
primrec Re: "Re (Complex x y) = x"
paulson@14373
    18
huffman@23125
    19
consts Im :: "complex \<Rightarrow> real"
huffman@20557
    20
primrec Im: "Im (Complex x y) = y"
paulson@14373
    21
paulson@14373
    22
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
paulson@14373
    23
  by (induct z) simp
paulson@13957
    24
huffman@23125
    25
lemma complex_equality [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
huffman@23125
    26
by (induct x, induct y) simp
huffman@23125
    27
huffman@23125
    28
lemma expand_complex_eq: "(x = y) = (Re x = Re y \<and> Im x = Im y)"
huffman@23125
    29
by (induct x, induct y) simp
huffman@23125
    30
huffman@23125
    31
lemmas complex_Re_Im_cancel_iff = expand_complex_eq
huffman@23125
    32
huffman@23125
    33
huffman@23125
    34
subsection {* Addition and Subtraction *}
huffman@23125
    35
huffman@23124
    36
instance complex :: zero
paulson@14323
    37
  complex_zero_def:
huffman@23125
    38
    "0 \<equiv> Complex 0 0" ..
huffman@23124
    39
huffman@23124
    40
instance complex :: plus
huffman@23124
    41
  complex_add_def:
huffman@23125
    42
    "x + y \<equiv> Complex (Re x + Re y) (Im x + Im y)" ..
paulson@14323
    43
huffman@23124
    44
instance complex :: minus
huffman@23125
    45
  complex_minus_def:
huffman@23125
    46
    "- x \<equiv> Complex (- Re x) (- Im x)"
huffman@23124
    47
  complex_diff_def:
huffman@23125
    48
    "x - y \<equiv> x + - y" ..
paulson@14323
    49
huffman@23125
    50
lemma Complex_eq_0 [simp]: "(Complex a b = 0) = (a = 0 \<and> b = 0)"
huffman@23125
    51
by (simp add: complex_zero_def)
paulson@14323
    52
paulson@14374
    53
lemma complex_Re_zero [simp]: "Re 0 = 0"
paulson@14374
    54
by (simp add: complex_zero_def)
paulson@14374
    55
paulson@14374
    56
lemma complex_Im_zero [simp]: "Im 0 = 0"
paulson@14373
    57
by (simp add: complex_zero_def)
paulson@14323
    58
huffman@23125
    59
lemma complex_add [simp]:
huffman@23125
    60
  "Complex a b + Complex c d = Complex (a + c) (b + d)"
huffman@23125
    61
by (simp add: complex_add_def)
huffman@23125
    62
huffman@23125
    63
lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
huffman@23125
    64
by (simp add: complex_add_def)
huffman@23125
    65
huffman@23125
    66
lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
huffman@23125
    67
by (simp add: complex_add_def)
huffman@23125
    68
huffman@23125
    69
lemma complex_minus [simp]: "- (Complex a b) = Complex (- a) (- b)"
huffman@23125
    70
by (simp add: complex_minus_def)
huffman@23125
    71
huffman@23125
    72
lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
huffman@23125
    73
by (simp add: complex_minus_def)
huffman@23125
    74
huffman@23125
    75
lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
huffman@23125
    76
by (simp add: complex_minus_def)
huffman@23125
    77
huffman@23275
    78
lemma complex_diff [simp]:
huffman@23125
    79
  "Complex a b - Complex c d = Complex (a - c) (b - d)"
huffman@23125
    80
by (simp add: complex_diff_def)
huffman@23125
    81
huffman@23125
    82
lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
huffman@23125
    83
by (simp add: complex_diff_def)
huffman@23125
    84
huffman@23125
    85
lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
huffman@23125
    86
by (simp add: complex_diff_def)
huffman@23125
    87
huffman@23125
    88
instance complex :: ab_group_add
huffman@23125
    89
proof
huffman@23125
    90
  fix x y z :: complex
huffman@23125
    91
  show "(x + y) + z = x + (y + z)"
huffman@23125
    92
    by (simp add: expand_complex_eq add_assoc)
huffman@23125
    93
  show "x + y = y + x"
huffman@23125
    94
    by (simp add: expand_complex_eq add_commute)
huffman@23125
    95
  show "0 + x = x"
huffman@23125
    96
    by (simp add: expand_complex_eq)
huffman@23125
    97
  show "- x + x = 0"
huffman@23125
    98
    by (simp add: expand_complex_eq)
huffman@23125
    99
  show "x - y = x + - y"
huffman@23125
   100
    by (simp add: expand_complex_eq)
huffman@23125
   101
qed
huffman@23125
   102
huffman@23125
   103
huffman@23125
   104
subsection {* Multiplication and Division *}
huffman@23125
   105
huffman@23125
   106
instance complex :: one
huffman@23125
   107
  complex_one_def:
huffman@23125
   108
    "1 \<equiv> Complex 1 0" ..
huffman@23125
   109
huffman@23125
   110
instance complex :: times
huffman@23125
   111
  complex_mult_def:
huffman@23125
   112
    "x * y \<equiv> Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)" ..
huffman@23125
   113
huffman@23125
   114
instance complex :: inverse
huffman@23125
   115
  complex_inverse_def:
huffman@23125
   116
    "inverse x \<equiv>
huffman@23125
   117
     Complex (Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)) (- Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>))"
huffman@23125
   118
  complex_divide_def:
huffman@23125
   119
    "x / y \<equiv> x * inverse y" ..
huffman@23125
   120
huffman@23125
   121
lemma Complex_eq_1 [simp]: "(Complex a b = 1) = (a = 1 \<and> b = 0)"
huffman@23125
   122
by (simp add: complex_one_def)
huffman@22861
   123
paulson@14374
   124
lemma complex_Re_one [simp]: "Re 1 = 1"
paulson@14374
   125
by (simp add: complex_one_def)
paulson@14323
   126
paulson@14374
   127
lemma complex_Im_one [simp]: "Im 1 = 0"
paulson@14373
   128
by (simp add: complex_one_def)
paulson@14323
   129
huffman@23125
   130
lemma complex_mult [simp]:
huffman@23125
   131
  "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
huffman@23125
   132
by (simp add: complex_mult_def)
paulson@14323
   133
huffman@23125
   134
lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
huffman@23125
   135
by (simp add: complex_mult_def)
paulson@14323
   136
huffman@23125
   137
lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
paulson@14373
   138
by (simp add: complex_mult_def)
paulson@14323
   139
paulson@14377
   140
lemma complex_inverse [simp]:
huffman@23125
   141
  "inverse (Complex a b) = Complex (a / (a\<twosuperior> + b\<twosuperior>)) (- b / (a\<twosuperior> + b\<twosuperior>))"
paulson@14373
   142
by (simp add: complex_inverse_def)
paulson@14335
   143
huffman@23125
   144
lemma complex_Re_inverse:
huffman@23125
   145
  "Re (inverse x) = Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
huffman@23125
   146
by (simp add: complex_inverse_def)
paulson@14323
   147
huffman@23125
   148
lemma complex_Im_inverse:
huffman@23125
   149
  "Im (inverse x) = - Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
huffman@23125
   150
by (simp add: complex_inverse_def)
paulson@14335
   151
paulson@14335
   152
instance complex :: field
paulson@14335
   153
proof
huffman@23125
   154
  fix x y z :: complex
huffman@23125
   155
  show "(x * y) * z = x * (y * z)"
nipkow@23477
   156
    by (simp add: expand_complex_eq ring_simps)
huffman@23125
   157
  show "x * y = y * x"
huffman@23125
   158
    by (simp add: expand_complex_eq mult_commute add_commute)
huffman@23125
   159
  show "1 * x = x"
huffman@23125
   160
    by (simp add: expand_complex_eq)
paulson@14341
   161
  show "0 \<noteq> (1::complex)"
huffman@23125
   162
    by (simp add: expand_complex_eq)
huffman@23125
   163
  show "(x + y) * z = x * z + y * z"
nipkow@23477
   164
    by (simp add: expand_complex_eq ring_simps)
huffman@23125
   165
  show "x / y = x * inverse y"
huffman@23125
   166
    by (simp only: complex_divide_def)
huffman@23125
   167
  show "x \<noteq> 0 \<Longrightarrow> inverse x * x = 1"
huffman@23125
   168
    by (induct x, simp add: power2_eq_square add_divide_distrib [symmetric])
paulson@14335
   169
qed
paulson@14335
   170
paulson@14373
   171
instance complex :: division_by_zero
paulson@14373
   172
proof
paulson@14430
   173
  show "inverse 0 = (0::complex)"
huffman@23125
   174
    by (simp add: complex_inverse_def)
huffman@23125
   175
qed
huffman@23125
   176
huffman@23125
   177
huffman@23125
   178
subsection {* Exponentiation *}
huffman@23125
   179
huffman@23125
   180
instance complex :: power ..
huffman@23125
   181
huffman@23125
   182
primrec
huffman@23125
   183
     complexpow_0:   "z ^ 0       = 1"
huffman@23125
   184
     complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)"
huffman@23125
   185
huffman@23125
   186
instance complex :: recpower
huffman@23125
   187
proof
huffman@23125
   188
  fix x :: complex and n :: nat
huffman@23125
   189
  show "x ^ 0 = 1" by simp
huffman@23125
   190
  show "x ^ Suc n = x * x ^ n" by simp
paulson@14373
   191
qed
paulson@14335
   192
paulson@14323
   193
huffman@23125
   194
subsection {* Numerals and Arithmetic *}
huffman@23125
   195
huffman@23125
   196
instance complex :: number
huffman@23125
   197
  complex_number_of_def:
huffman@23125
   198
    "number_of w \<equiv> of_int w" ..
huffman@23125
   199
huffman@23125
   200
instance complex :: number_ring
huffman@23125
   201
by (intro_classes, simp only: complex_number_of_def)
huffman@23125
   202
huffman@23125
   203
lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
huffman@23125
   204
by (induct n) simp_all
huffman@20556
   205
huffman@23125
   206
lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
huffman@23125
   207
by (induct n) simp_all
huffman@23125
   208
huffman@23125
   209
lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
huffman@23125
   210
by (cases z rule: int_diff_cases) simp
huffman@23125
   211
huffman@23125
   212
lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
huffman@23125
   213
by (cases z rule: int_diff_cases) simp
huffman@23125
   214
huffman@23125
   215
lemma complex_Re_number_of [simp]: "Re (number_of v) = number_of v"
huffman@23125
   216
unfolding number_ring_class.axioms by (rule complex_Re_of_int)
huffman@20556
   217
huffman@23125
   218
lemma complex_Im_number_of [simp]: "Im (number_of v) = 0"
huffman@23125
   219
unfolding number_ring_class.axioms by (rule complex_Im_of_int)
huffman@23125
   220
huffman@23125
   221
lemma Complex_eq_number_of [simp]:
huffman@23125
   222
  "(Complex a b = number_of w) = (a = number_of w \<and> b = 0)"
huffman@23125
   223
by (simp add: expand_complex_eq)
huffman@23125
   224
huffman@23125
   225
huffman@23125
   226
subsection {* Scalar Multiplication *}
huffman@20556
   227
huffman@23125
   228
instance complex :: scaleR
huffman@23125
   229
  complex_scaleR_def:
huffman@23125
   230
    "scaleR r x \<equiv> Complex (r * Re x) (r * Im x)" ..
huffman@22972
   231
huffman@23125
   232
lemma complex_scaleR [simp]:
huffman@23125
   233
  "scaleR r (Complex a b) = Complex (r * a) (r * b)"
huffman@23125
   234
unfolding complex_scaleR_def by simp
huffman@23125
   235
huffman@23125
   236
lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
huffman@23125
   237
unfolding complex_scaleR_def by simp
huffman@23125
   238
huffman@23125
   239
lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
huffman@23125
   240
unfolding complex_scaleR_def by simp
huffman@22972
   241
huffman@20725
   242
instance complex :: real_field
huffman@20556
   243
proof
huffman@23125
   244
  fix a b :: real and x y :: complex
huffman@23125
   245
  show "scaleR a (x + y) = scaleR a x + scaleR a y"
huffman@23125
   246
    by (simp add: expand_complex_eq right_distrib)
huffman@23125
   247
  show "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@23125
   248
    by (simp add: expand_complex_eq left_distrib)
huffman@23125
   249
  show "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@23125
   250
    by (simp add: expand_complex_eq mult_assoc)
huffman@23125
   251
  show "scaleR 1 x = x"
huffman@23125
   252
    by (simp add: expand_complex_eq)
huffman@23125
   253
  show "scaleR a x * y = scaleR a (x * y)"
nipkow@23477
   254
    by (simp add: expand_complex_eq ring_simps)
huffman@23125
   255
  show "x * scaleR a y = scaleR a (x * y)"
nipkow@23477
   256
    by (simp add: expand_complex_eq ring_simps)
huffman@20556
   257
qed
huffman@20556
   258
huffman@20556
   259
huffman@23125
   260
subsection{* Properties of Embedding from Reals *}
paulson@14323
   261
huffman@20557
   262
abbreviation
huffman@23125
   263
  complex_of_real :: "real \<Rightarrow> complex" where
huffman@23125
   264
    "complex_of_real \<equiv> of_real"
huffman@20557
   265
huffman@20557
   266
lemma complex_of_real_def: "complex_of_real r = Complex r 0"
huffman@20557
   267
by (simp add: of_real_def complex_scaleR_def)
huffman@20557
   268
huffman@20557
   269
lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
huffman@20557
   270
by (simp add: complex_of_real_def)
huffman@20557
   271
huffman@20557
   272
lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
huffman@20557
   273
by (simp add: complex_of_real_def)
huffman@20557
   274
paulson@14377
   275
lemma Complex_add_complex_of_real [simp]:
paulson@14377
   276
     "Complex x y + complex_of_real r = Complex (x+r) y"
paulson@14377
   277
by (simp add: complex_of_real_def)
paulson@14377
   278
paulson@14377
   279
lemma complex_of_real_add_Complex [simp]:
paulson@14377
   280
     "complex_of_real r + Complex x y = Complex (r+x) y"
huffman@23125
   281
by (simp add: complex_of_real_def)
paulson@14377
   282
paulson@14377
   283
lemma Complex_mult_complex_of_real:
paulson@14377
   284
     "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
paulson@14377
   285
by (simp add: complex_of_real_def)
paulson@14377
   286
paulson@14377
   287
lemma complex_of_real_mult_Complex:
paulson@14377
   288
     "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
huffman@23125
   289
by (simp add: complex_of_real_def)
huffman@20557
   290
paulson@14377
   291
huffman@23125
   292
subsection {* Vector Norm *}
paulson@14323
   293
huffman@22861
   294
instance complex :: norm
huffman@23125
   295
  complex_norm_def:
huffman@23125
   296
    "norm z \<equiv> sqrt ((Re z)\<twosuperior> + (Im z)\<twosuperior>)" ..
huffman@20557
   297
huffman@20557
   298
abbreviation
huffman@22861
   299
  cmod :: "complex \<Rightarrow> real" where
huffman@23125
   300
    "cmod \<equiv> norm"
huffman@20557
   301
nipkow@24506
   302
instance complex :: sgn
nipkow@24506
   303
  complex_sgn_def: "sgn x == x /\<^sub>R cmod x" ..
nipkow@24506
   304
huffman@20557
   305
lemmas cmod_def = complex_norm_def
huffman@20557
   306
huffman@23125
   307
lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<twosuperior> + y\<twosuperior>)"
huffman@23125
   308
by (simp add: complex_norm_def)
huffman@22852
   309
huffman@20725
   310
instance complex :: real_normed_field
huffman@20557
   311
proof
huffman@23125
   312
  fix r :: real and x y :: complex
huffman@23125
   313
  show "0 \<le> norm x"
huffman@22861
   314
    by (induct x) simp
huffman@23125
   315
  show "(norm x = 0) = (x = 0)"
huffman@22861
   316
    by (induct x) simp
huffman@23125
   317
  show "norm (x + y) \<le> norm x + norm y"
huffman@23125
   318
    by (induct x, induct y)
huffman@23125
   319
       (simp add: real_sqrt_sum_squares_triangle_ineq)
huffman@23125
   320
  show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
huffman@23125
   321
    by (induct x)
huffman@23125
   322
       (simp add: power_mult_distrib right_distrib [symmetric] real_sqrt_mult)
huffman@23125
   323
  show "norm (x * y) = norm x * norm y"
huffman@23125
   324
    by (induct x, induct y)
nipkow@23477
   325
       (simp add: real_sqrt_mult [symmetric] power2_eq_square ring_simps)
nipkow@24506
   326
  show "sgn x = x /\<^sub>R cmod x" by(simp add: complex_sgn_def)
nipkow@24506
   327
qed (* FIXME junk *) (rule refl)+
huffman@20557
   328
huffman@22861
   329
lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1"
huffman@22861
   330
by simp
paulson@14323
   331
huffman@22861
   332
lemma cmod_complex_polar [simp]:
huffman@22861
   333
     "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
huffman@23125
   334
by (simp add: norm_mult)
huffman@22861
   335
huffman@22861
   336
lemma complex_Re_le_cmod: "Re x \<le> cmod x"
huffman@22861
   337
unfolding complex_norm_def
huffman@22861
   338
by (rule real_sqrt_sum_squares_ge1)
huffman@22861
   339
huffman@22861
   340
lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x"
huffman@22861
   341
by (rule order_trans [OF _ norm_ge_zero], simp)
huffman@22861
   342
huffman@22861
   343
lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a"
huffman@22861
   344
by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
paulson@14323
   345
huffman@22861
   346
lemmas real_sum_squared_expand = power2_sum [where 'a=real]
paulson@14323
   347
paulson@14354
   348
huffman@23123
   349
subsection {* Completeness of the Complexes *}
huffman@23123
   350
huffman@23123
   351
interpretation Re: bounded_linear ["Re"]
huffman@23123
   352
apply (unfold_locales, simp, simp)
huffman@23123
   353
apply (rule_tac x=1 in exI)
huffman@23123
   354
apply (simp add: complex_norm_def)
huffman@23123
   355
done
huffman@23123
   356
huffman@23123
   357
interpretation Im: bounded_linear ["Im"]
huffman@23123
   358
apply (unfold_locales, simp, simp)
huffman@23123
   359
apply (rule_tac x=1 in exI)
huffman@23123
   360
apply (simp add: complex_norm_def)
huffman@23123
   361
done
huffman@23123
   362
huffman@23123
   363
lemma LIMSEQ_Complex:
huffman@23123
   364
  "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. Complex (X n) (Y n)) ----> Complex a b"
huffman@23123
   365
apply (rule LIMSEQ_I)
huffman@23123
   366
apply (subgoal_tac "0 < r / sqrt 2")
huffman@23123
   367
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
huffman@23123
   368
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
huffman@23123
   369
apply (rename_tac M N, rule_tac x="max M N" in exI, safe)
huffman@23123
   370
apply (simp add: real_sqrt_sum_squares_less)
huffman@23123
   371
apply (simp add: divide_pos_pos)
huffman@23123
   372
done
huffman@23123
   373
huffman@23123
   374
instance complex :: banach
huffman@23123
   375
proof
huffman@23123
   376
  fix X :: "nat \<Rightarrow> complex"
huffman@23123
   377
  assume X: "Cauchy X"
huffman@23123
   378
  from Re.Cauchy [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
huffman@23123
   379
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   380
  from Im.Cauchy [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
huffman@23123
   381
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   382
  have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
huffman@23123
   383
    using LIMSEQ_Complex [OF 1 2] by simp
huffman@23123
   384
  thus "convergent X"
huffman@23123
   385
    by (rule convergentI)
huffman@23123
   386
qed
huffman@23123
   387
huffman@23123
   388
huffman@23125
   389
subsection {* The Complex Number @{term "\<i>"} *}
huffman@23125
   390
huffman@23125
   391
definition
huffman@23125
   392
  "ii" :: complex  ("\<i>") where
huffman@23125
   393
  i_def: "ii \<equiv> Complex 0 1"
huffman@23125
   394
huffman@23125
   395
lemma complex_Re_i [simp]: "Re ii = 0"
huffman@23125
   396
by (simp add: i_def)
paulson@14354
   397
huffman@23125
   398
lemma complex_Im_i [simp]: "Im ii = 1"
huffman@23125
   399
by (simp add: i_def)
huffman@23125
   400
huffman@23125
   401
lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
huffman@23125
   402
by (simp add: i_def)
huffman@23125
   403
huffman@23125
   404
lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
huffman@23125
   405
by (simp add: expand_complex_eq)
huffman@23125
   406
huffman@23125
   407
lemma complex_i_not_one [simp]: "ii \<noteq> 1"
huffman@23125
   408
by (simp add: expand_complex_eq)
huffman@23124
   409
huffman@23125
   410
lemma complex_i_not_number_of [simp]: "ii \<noteq> number_of w"
huffman@23125
   411
by (simp add: expand_complex_eq)
huffman@23125
   412
huffman@23125
   413
lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
huffman@23125
   414
by (simp add: expand_complex_eq)
huffman@23125
   415
huffman@23125
   416
lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
huffman@23125
   417
by (simp add: expand_complex_eq)
huffman@23125
   418
huffman@23125
   419
lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
huffman@23125
   420
by (simp add: i_def complex_of_real_def)
huffman@23125
   421
huffman@23125
   422
lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
huffman@23125
   423
by (simp add: i_def complex_of_real_def)
huffman@23125
   424
huffman@23125
   425
lemma i_squared [simp]: "ii * ii = -1"
huffman@23125
   426
by (simp add: i_def)
huffman@23125
   427
huffman@23125
   428
lemma power2_i [simp]: "ii\<twosuperior> = -1"
huffman@23125
   429
by (simp add: power2_eq_square)
huffman@23125
   430
huffman@23125
   431
lemma inverse_i [simp]: "inverse ii = - ii"
huffman@23125
   432
by (rule inverse_unique, simp)
paulson@14354
   433
paulson@14354
   434
huffman@23125
   435
subsection {* Complex Conjugation *}
huffman@23125
   436
huffman@23125
   437
definition
huffman@23125
   438
  cnj :: "complex \<Rightarrow> complex" where
huffman@23125
   439
  "cnj z = Complex (Re z) (- Im z)"
huffman@23125
   440
huffman@23125
   441
lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
huffman@23125
   442
by (simp add: cnj_def)
huffman@23125
   443
huffman@23125
   444
lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
huffman@23125
   445
by (simp add: cnj_def)
huffman@23125
   446
huffman@23125
   447
lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
huffman@23125
   448
by (simp add: cnj_def)
huffman@23125
   449
huffman@23125
   450
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
huffman@23125
   451
by (simp add: expand_complex_eq)
huffman@23125
   452
huffman@23125
   453
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
huffman@23125
   454
by (simp add: cnj_def)
huffman@23125
   455
huffman@23125
   456
lemma complex_cnj_zero [simp]: "cnj 0 = 0"
huffman@23125
   457
by (simp add: expand_complex_eq)
huffman@23125
   458
huffman@23125
   459
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
huffman@23125
   460
by (simp add: expand_complex_eq)
huffman@23125
   461
huffman@23125
   462
lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
huffman@23125
   463
by (simp add: expand_complex_eq)
huffman@23125
   464
huffman@23125
   465
lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
huffman@23125
   466
by (simp add: expand_complex_eq)
huffman@23125
   467
huffman@23125
   468
lemma complex_cnj_minus: "cnj (- x) = - cnj x"
huffman@23125
   469
by (simp add: expand_complex_eq)
huffman@23125
   470
huffman@23125
   471
lemma complex_cnj_one [simp]: "cnj 1 = 1"
huffman@23125
   472
by (simp add: expand_complex_eq)
huffman@23125
   473
huffman@23125
   474
lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
huffman@23125
   475
by (simp add: expand_complex_eq)
huffman@23125
   476
huffman@23125
   477
lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
huffman@23125
   478
by (simp add: complex_inverse_def)
paulson@14323
   479
huffman@23125
   480
lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
huffman@23125
   481
by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
huffman@23125
   482
huffman@23125
   483
lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
huffman@23125
   484
by (induct n, simp_all add: complex_cnj_mult)
huffman@23125
   485
huffman@23125
   486
lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
huffman@23125
   487
by (simp add: expand_complex_eq)
huffman@23125
   488
huffman@23125
   489
lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
huffman@23125
   490
by (simp add: expand_complex_eq)
huffman@23125
   491
huffman@23125
   492
lemma complex_cnj_number_of [simp]: "cnj (number_of w) = number_of w"
huffman@23125
   493
by (simp add: expand_complex_eq)
huffman@23125
   494
huffman@23125
   495
lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
huffman@23125
   496
by (simp add: expand_complex_eq)
huffman@23125
   497
huffman@23125
   498
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
huffman@23125
   499
by (simp add: complex_norm_def)
paulson@14323
   500
huffman@23125
   501
lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
huffman@23125
   502
by (simp add: expand_complex_eq)
huffman@23125
   503
huffman@23125
   504
lemma complex_cnj_i [simp]: "cnj ii = - ii"
huffman@23125
   505
by (simp add: expand_complex_eq)
huffman@23125
   506
huffman@23125
   507
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
huffman@23125
   508
by (simp add: expand_complex_eq)
huffman@23125
   509
huffman@23125
   510
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii"
huffman@23125
   511
by (simp add: expand_complex_eq)
paulson@14354
   512
huffman@23125
   513
lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
huffman@23125
   514
by (simp add: expand_complex_eq power2_eq_square)
huffman@23125
   515
huffman@23125
   516
lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<twosuperior>"
huffman@23125
   517
by (simp add: norm_mult power2_eq_square)
huffman@23125
   518
huffman@23125
   519
interpretation cnj: bounded_linear ["cnj"]
huffman@23125
   520
apply (unfold_locales)
huffman@23125
   521
apply (rule complex_cnj_add)
huffman@23125
   522
apply (rule complex_cnj_scaleR)
huffman@23125
   523
apply (rule_tac x=1 in exI, simp)
huffman@23125
   524
done
paulson@14354
   525
paulson@14354
   526
huffman@22972
   527
subsection{*The Functions @{term sgn} and @{term arg}*}
paulson@14323
   528
huffman@22972
   529
text {*------------ Argand -------------*}
huffman@20557
   530
wenzelm@21404
   531
definition
wenzelm@21404
   532
  arg :: "complex => real" where
huffman@20557
   533
  "arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)"
huffman@20557
   534
paulson@14374
   535
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
nipkow@24506
   536
by (simp add: complex_sgn_def divide_inverse scaleR_conv_of_real mult_commute)
paulson@14323
   537
paulson@14323
   538
lemma i_mult_eq: "ii * ii = complex_of_real (-1)"
huffman@20725
   539
by (simp add: i_def complex_of_real_def)
paulson@14323
   540
paulson@14374
   541
lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)"
huffman@20725
   542
by (simp add: i_def complex_one_def)
paulson@14323
   543
paulson@14374
   544
lemma complex_eq_cancel_iff2 [simp]:
paulson@14377
   545
     "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
paulson@14377
   546
by (simp add: complex_of_real_def)
paulson@14323
   547
paulson@14374
   548
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
nipkow@24506
   549
by (simp add: complex_sgn_def divide_inverse)
paulson@14323
   550
paulson@14374
   551
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
nipkow@24506
   552
by (simp add: complex_sgn_def divide_inverse)
paulson@14323
   553
paulson@14323
   554
lemma complex_inverse_complex_split:
paulson@14323
   555
     "inverse(complex_of_real x + ii * complex_of_real y) =
paulson@14323
   556
      complex_of_real(x/(x ^ 2 + y ^ 2)) -
paulson@14323
   557
      ii * complex_of_real(y/(x ^ 2 + y ^ 2))"
huffman@20725
   558
by (simp add: complex_of_real_def i_def diff_minus divide_inverse)
paulson@14323
   559
paulson@14323
   560
(*----------------------------------------------------------------------------*)
paulson@14323
   561
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *)
paulson@14323
   562
(* many of the theorems are not used - so should they be kept?                *)
paulson@14323
   563
(*----------------------------------------------------------------------------*)
paulson@14323
   564
paulson@14354
   565
lemma cos_arg_i_mult_zero_pos:
paulson@14377
   566
   "0 < y ==> cos (arg(Complex 0 y)) = 0"
paulson@14373
   567
apply (simp add: arg_def abs_if)
paulson@14334
   568
apply (rule_tac a = "pi/2" in someI2, auto)
paulson@14334
   569
apply (rule order_less_trans [of _ 0], auto)
paulson@14323
   570
done
paulson@14323
   571
paulson@14354
   572
lemma cos_arg_i_mult_zero_neg:
paulson@14377
   573
   "y < 0 ==> cos (arg(Complex 0 y)) = 0"
paulson@14373
   574
apply (simp add: arg_def abs_if)
paulson@14334
   575
apply (rule_tac a = "- pi/2" in someI2, auto)
paulson@14334
   576
apply (rule order_trans [of _ 0], auto)
paulson@14323
   577
done
paulson@14323
   578
paulson@14374
   579
lemma cos_arg_i_mult_zero [simp]:
paulson@14377
   580
     "y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
paulson@14377
   581
by (auto simp add: linorder_neq_iff cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg)
paulson@14323
   582
paulson@14323
   583
paulson@14323
   584
subsection{*Finally! Polar Form for Complex Numbers*}
paulson@14323
   585
huffman@20557
   586
definition
huffman@20557
   587
huffman@20557
   588
  (* abbreviation for (cos a + i sin a) *)
wenzelm@21404
   589
  cis :: "real => complex" where
huffman@20557
   590
  "cis a = Complex (cos a) (sin a)"
huffman@20557
   591
wenzelm@21404
   592
definition
huffman@20557
   593
  (* abbreviation for r*(cos a + i sin a) *)
wenzelm@21404
   594
  rcis :: "[real, real] => complex" where
huffman@20557
   595
  "rcis r a = complex_of_real r * cis a"
huffman@20557
   596
wenzelm@21404
   597
definition
huffman@20557
   598
  (* e ^ (x + iy) *)
wenzelm@21404
   599
  expi :: "complex => complex" where
huffman@20557
   600
  "expi z = complex_of_real(exp (Re z)) * cis (Im z)"
huffman@20557
   601
paulson@14374
   602
lemma complex_split_polar:
paulson@14377
   603
     "\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
huffman@20725
   604
apply (induct z)
paulson@14377
   605
apply (auto simp add: polar_Ex complex_of_real_mult_Complex)
paulson@14323
   606
done
paulson@14323
   607
paulson@14354
   608
lemma rcis_Ex: "\<exists>r a. z = rcis r a"
huffman@20725
   609
apply (induct z)
paulson@14377
   610
apply (simp add: rcis_def cis_def polar_Ex complex_of_real_mult_Complex)
paulson@14323
   611
done
paulson@14323
   612
paulson@14374
   613
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
paulson@14373
   614
by (simp add: rcis_def cis_def)
paulson@14323
   615
paulson@14348
   616
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
paulson@14373
   617
by (simp add: rcis_def cis_def)
paulson@14323
   618
paulson@14377
   619
lemma sin_cos_squared_add2_mult: "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior>"
paulson@14377
   620
proof -
paulson@14377
   621
  have "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior> * ((cos a)\<twosuperior> + (sin a)\<twosuperior>)"
huffman@20725
   622
    by (simp only: power_mult_distrib right_distrib)
paulson@14377
   623
  thus ?thesis by simp
paulson@14377
   624
qed
paulson@14323
   625
paulson@14374
   626
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r"
paulson@14377
   627
by (simp add: rcis_def cis_def sin_cos_squared_add2_mult)
paulson@14323
   628
paulson@14374
   629
lemma complex_Re_cnj [simp]: "Re(cnj z) = Re z"
paulson@14373
   630
by (induct z, simp add: complex_cnj)
paulson@14323
   631
paulson@14374
   632
lemma complex_Im_cnj [simp]: "Im(cnj z) = - Im z"
paulson@14374
   633
by (induct z, simp add: complex_cnj)
paulson@14374
   634
huffman@23125
   635
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
huffman@23125
   636
by (simp add: cmod_def power2_eq_square)
huffman@23125
   637
paulson@14374
   638
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
huffman@23125
   639
by simp
paulson@14323
   640
paulson@14323
   641
paulson@14323
   642
(*---------------------------------------------------------------------------*)
paulson@14323
   643
(*  (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b)                      *)
paulson@14323
   644
(*---------------------------------------------------------------------------*)
paulson@14323
   645
paulson@14323
   646
lemma cis_rcis_eq: "cis a = rcis 1 a"
paulson@14373
   647
by (simp add: rcis_def)
paulson@14323
   648
paulson@14374
   649
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
paulson@15013
   650
by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib
paulson@15013
   651
              complex_of_real_def)
paulson@14323
   652
paulson@14323
   653
lemma cis_mult: "cis a * cis b = cis (a + b)"
paulson@14373
   654
by (simp add: cis_rcis_eq rcis_mult)
paulson@14323
   655
paulson@14374
   656
lemma cis_zero [simp]: "cis 0 = 1"
paulson@14377
   657
by (simp add: cis_def complex_one_def)
paulson@14323
   658
paulson@14374
   659
lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
paulson@14373
   660
by (simp add: rcis_def)
paulson@14323
   661
paulson@14374
   662
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
paulson@14373
   663
by (simp add: rcis_def)
paulson@14323
   664
paulson@14323
   665
lemma complex_of_real_minus_one:
paulson@14323
   666
   "complex_of_real (-(1::real)) = -(1::complex)"
huffman@20725
   667
by (simp add: complex_of_real_def complex_one_def)
paulson@14323
   668
paulson@14374
   669
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
huffman@23125
   670
by (simp add: mult_assoc [symmetric])
paulson@14323
   671
paulson@14323
   672
paulson@14323
   673
lemma cis_real_of_nat_Suc_mult:
paulson@14323
   674
   "cis (real (Suc n) * a) = cis a * cis (real n * a)"
paulson@14377
   675
by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib)
paulson@14323
   676
paulson@14323
   677
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
paulson@14323
   678
apply (induct_tac "n")
paulson@14323
   679
apply (auto simp add: cis_real_of_nat_Suc_mult)
paulson@14323
   680
done
paulson@14323
   681
paulson@14374
   682
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
huffman@22890
   683
by (simp add: rcis_def power_mult_distrib DeMoivre)
paulson@14323
   684
paulson@14374
   685
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
huffman@20725
   686
by (simp add: cis_def complex_inverse_complex_split diff_minus)
paulson@14323
   687
paulson@14323
   688
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
huffman@22884
   689
by (simp add: divide_inverse rcis_def)
paulson@14323
   690
paulson@14323
   691
lemma cis_divide: "cis a / cis b = cis (a - b)"
paulson@14373
   692
by (simp add: complex_divide_def cis_mult real_diff_def)
paulson@14323
   693
paulson@14354
   694
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
paulson@14373
   695
apply (simp add: complex_divide_def)
paulson@14373
   696
apply (case_tac "r2=0", simp)
paulson@14373
   697
apply (simp add: rcis_inverse rcis_mult real_diff_def)
paulson@14323
   698
done
paulson@14323
   699
paulson@14374
   700
lemma Re_cis [simp]: "Re(cis a) = cos a"
paulson@14373
   701
by (simp add: cis_def)
paulson@14323
   702
paulson@14374
   703
lemma Im_cis [simp]: "Im(cis a) = sin a"
paulson@14373
   704
by (simp add: cis_def)
paulson@14323
   705
paulson@14323
   706
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
paulson@14334
   707
by (auto simp add: DeMoivre)
paulson@14323
   708
paulson@14323
   709
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
paulson@14334
   710
by (auto simp add: DeMoivre)
paulson@14323
   711
paulson@14323
   712
lemma expi_add: "expi(a + b) = expi(a) * expi(b)"
huffman@20725
   713
by (simp add: expi_def exp_add cis_mult [symmetric] mult_ac)
paulson@14323
   714
paulson@14374
   715
lemma expi_zero [simp]: "expi (0::complex) = 1"
paulson@14373
   716
by (simp add: expi_def)
paulson@14323
   717
paulson@14374
   718
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a"
paulson@14373
   719
apply (insert rcis_Ex [of z])
huffman@23125
   720
apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])
paulson@14334
   721
apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
paulson@14323
   722
done
paulson@14323
   723
paulson@14387
   724
lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
huffman@23125
   725
by (simp add: expi_def cis_def)
paulson@14387
   726
paulson@14387
   727
(*examples:
paulson@14387
   728
print_depth 22
paulson@14387
   729
set timing;
paulson@14387
   730
set trace_simp;
paulson@14387
   731
fun test s = (Goal s, by (Simp_tac 1)); 
paulson@14387
   732
paulson@14387
   733
test "23 * ii + 45 * ii= (x::complex)";
paulson@14387
   734
paulson@14387
   735
test "5 * ii + 12 - 45 * ii= (x::complex)";
paulson@14387
   736
test "5 * ii + 40 - 12 * ii + 9 = (x::complex) + 89 * ii";
paulson@14387
   737
test "5 * ii + 40 - 12 * ii + 9 - 78 = (x::complex) + 89 * ii";
paulson@14387
   738
paulson@14387
   739
test "l + 10 * ii + 90 + 3*l +  9 + 45 * ii= (x::complex)";
paulson@14387
   740
test "87 + 10 * ii + 90 + 3*7 +  9 + 45 * ii= (x::complex)";
paulson@14387
   741
paulson@14387
   742
paulson@14387
   743
fun test s = (Goal s; by (Asm_simp_tac 1)); 
paulson@14387
   744
paulson@14387
   745
test "x*k = k*(y::complex)";
paulson@14387
   746
test "k = k*(y::complex)"; 
paulson@14387
   747
test "a*(b*c) = (b::complex)";
paulson@14387
   748
test "a*(b*c) = d*(b::complex)*(x*a)";
paulson@14387
   749
paulson@14387
   750
paulson@14387
   751
test "(x*k) / (k*(y::complex)) = (uu::complex)";
paulson@14387
   752
test "(k) / (k*(y::complex)) = (uu::complex)"; 
paulson@14387
   753
test "(a*(b*c)) / ((b::complex)) = (uu::complex)";
paulson@14387
   754
test "(a*(b*c)) / (d*(b::complex)*(x*a)) = (uu::complex)";
paulson@14387
   755
paulson@15003
   756
FIXME: what do we do about this?
paulson@14387
   757
test "a*(b*c)/(y*z) = d*(b::complex)*(x*a)/z";
paulson@14387
   758
*)
paulson@14387
   759
paulson@13957
   760
end