src/HOL/ex/CTL.thy
author wenzelm
Sat, 26 Dec 2015 16:10:00 +0100
changeset 61934 02610a806467
parent 61933 cf58b5b794b2
child 63054 1b237d147cc4
permissions -rw-r--r--
tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     1
(*  Title:      HOL/ex/CTL.thy
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     2
    Author:     Gertrud Bauer
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     3
*)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     4
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
     5
section \<open>CTL formulae\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     6
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     7
theory CTL
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     8
imports Main
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
     9
begin
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    10
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    11
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    12
  We formalize basic concepts of Computational Tree Logic (CTL) @{cite
wenzelm
parents: 61933
diff changeset
    13
  "McMillan-PhDThesis" and "McMillan-LectureNotes"} within the simply-typed
wenzelm
parents: 61933
diff changeset
    14
  set theory of HOL.
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    15
61934
wenzelm
parents: 61933
diff changeset
    16
  By using the common technique of ``shallow embedding'', a CTL formula is
wenzelm
parents: 61933
diff changeset
    17
  identified with the corresponding set of states where it holds.
wenzelm
parents: 61933
diff changeset
    18
  Consequently, CTL operations such as negation, conjunction, disjunction
wenzelm
parents: 61933
diff changeset
    19
  simply become complement, intersection, union of sets. We only require a
wenzelm
parents: 61933
diff changeset
    20
  separate operation for implication, as point-wise inclusion is usually not
wenzelm
parents: 61933
diff changeset
    21
  encountered in plain set-theory.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    22
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    23
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    24
lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    25
42463
f270e3e18be5 modernized specifications;
wenzelm
parents: 41460
diff changeset
    26
type_synonym 'a ctl = "'a set"
20807
wenzelm
parents: 17388
diff changeset
    27
wenzelm
parents: 17388
diff changeset
    28
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    29
  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75) where
20807
wenzelm
parents: 17388
diff changeset
    30
  "p \<rightarrow> q = - p \<union> q"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    31
20807
wenzelm
parents: 17388
diff changeset
    32
lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" unfolding imp_def by auto
wenzelm
parents: 17388
diff changeset
    33
lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" unfolding imp_def by rule
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    34
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    35
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    36
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    37
  \<^smallskip>
wenzelm
parents: 61933
diff changeset
    38
  The CTL path operators are more interesting; they are based on an arbitrary,
wenzelm
parents: 61933
diff changeset
    39
  but fixed model \<open>\<M>\<close>, which is simply a transition relation over states
wenzelm
parents: 61933
diff changeset
    40
  @{typ 'a}.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    41
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    42
20807
wenzelm
parents: 17388
diff changeset
    43
axiomatization \<M> :: "('a \<times> 'a) set"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    44
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    45
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    46
  The operators \<open>\<EX>\<close>, \<open>\<EF>\<close>, \<open>\<EG>\<close> are taken as primitives, while
wenzelm
parents: 61933
diff changeset
    47
  \<open>\<AX>\<close>, \<open>\<AF>\<close>, \<open>\<AG>\<close> are defined as derived ones. The formula \<open>\<EX> p\<close>
wenzelm
parents: 61933
diff changeset
    48
  holds in a state @{term s}, iff there is a successor state @{term s'} (with
wenzelm
parents: 61933
diff changeset
    49
  respect to the model @{term \<M>}), such that @{term p} holds in @{term s'}.
wenzelm
parents: 61933
diff changeset
    50
  The formula \<open>\<EF> p\<close> holds in a state @{term s}, iff there is a path in
wenzelm
parents: 61933
diff changeset
    51
  \<open>\<M>\<close>, starting from @{term s}, such that there exists a state @{term s'} on
wenzelm
parents: 61933
diff changeset
    52
  the path, such that @{term p} holds in @{term s'}. The formula \<open>\<EG> p\<close>
wenzelm
parents: 61933
diff changeset
    53
  holds in a state @{term s}, iff there is a path, starting from @{term s},
wenzelm
parents: 61933
diff changeset
    54
  such that for all states @{term s'} on the path, @{term p} holds in @{term
wenzelm
parents: 61933
diff changeset
    55
  s'}. It is easy to see that \<open>\<EF> p\<close> and \<open>\<EG> p\<close> may be expressed using
wenzelm
parents: 61933
diff changeset
    56
  least and greatest fixed points @{cite "McMillan-PhDThesis"}.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    57
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    58
61934
wenzelm
parents: 61933
diff changeset
    59
definition EX  ("\<EX> _" [80] 90)
wenzelm
parents: 61933
diff changeset
    60
  where [simp]: "\<EX> p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
wenzelm
parents: 61933
diff changeset
    61
definition EF ("\<EF> _" [80] 90)
wenzelm
parents: 61933
diff changeset
    62
  where [simp]: "\<EF> p = lfp (\<lambda>s. p \<union> \<EX> s)"
wenzelm
parents: 61933
diff changeset
    63
definition EG ("\<EG> _" [80] 90)
wenzelm
parents: 61933
diff changeset
    64
  where [simp]: "\<EG> p = gfp (\<lambda>s. p \<inter> \<EX> s)"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    65
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    66
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    67
  \<open>\<AX>\<close>, \<open>\<AF>\<close> and \<open>\<AG>\<close> are now defined dually in terms of \<open>\<EX>\<close>,
wenzelm
parents: 61933
diff changeset
    68
  \<open>\<EF>\<close> and \<open>\<EG>\<close>.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    69
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    70
61934
wenzelm
parents: 61933
diff changeset
    71
definition AX  ("\<AX> _" [80] 90)
wenzelm
parents: 61933
diff changeset
    72
  where [simp]: "\<AX> p = - \<EX> - p"
wenzelm
parents: 61933
diff changeset
    73
definition AF  ("\<AF> _" [80] 90)
wenzelm
parents: 61933
diff changeset
    74
  where [simp]: "\<AF> p = - \<EG> - p"
wenzelm
parents: 61933
diff changeset
    75
definition AG  ("\<AG> _" [80] 90)
wenzelm
parents: 61933
diff changeset
    76
  where [simp]: "\<AG> p = - \<EF> - p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    77
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    78
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    79
subsection \<open>Basic fixed point properties\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    80
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    81
text \<open>
61934
wenzelm
parents: 61933
diff changeset
    82
  First of all, we use the de-Morgan property of fixed points.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    83
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    84
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    85
lemma lfp_gfp: "lfp f = - gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    86
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    87
  show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    88
  proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    89
    fix x assume l: "x \<in> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    90
    show "x \<in> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    91
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    92
      assume "x \<in> gfp (\<lambda>s. - f (- s))"
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    93
      then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)"
32587
caa5ada96a00 Inter and Union are mere abbreviations for Inf and Sup
haftmann
parents: 26813
diff changeset
    94
        by (auto simp add: gfp_def)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    95
      then have "f (- u) \<subseteq> - u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    96
      then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    97
      from l and this have "x \<notin> u" by auto
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    98
      with \<open>x \<in> u\<close> show False by contradiction
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    99
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   100
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   101
  show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   102
  proof (rule lfp_greatest)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   103
    fix u assume "f u \<subseteq> u"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   104
    then have "- u \<subseteq> - f u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   105
    then have "- u \<subseteq> - f (- (- u))" by simp
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   106
    then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   107
    then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   108
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   109
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   110
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   111
lemma lfp_gfp': "- lfp f = gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   112
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   113
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   114
lemma gfp_lfp': "- gfp f = lfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   115
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   116
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   117
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   118
  In order to give dual fixed point representations of @{term "\<AF> p"} and
wenzelm
parents: 61933
diff changeset
   119
  @{term "\<AG> p"}:
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   120
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   121
61934
wenzelm
parents: 61933
diff changeset
   122
lemma AF_lfp: "\<AF> p = lfp (\<lambda>s. p \<union> \<AX> s)"
wenzelm
parents: 61933
diff changeset
   123
  by (simp add: lfp_gfp)
wenzelm
parents: 61933
diff changeset
   124
lemma AG_gfp: "\<AG> p = gfp (\<lambda>s. p \<inter> \<AX> s)"
wenzelm
parents: 61933
diff changeset
   125
  by (simp add: lfp_gfp)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   126
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   127
lemma EF_fp: "\<EF> p = p \<union> \<EX> \<EF> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   128
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   129
  have "mono (\<lambda>s. p \<union> \<EX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   130
  then show ?thesis by (simp only: EF_def) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   131
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   132
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   133
lemma AF_fp: "\<AF> p = p \<union> \<AX> \<AF> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   134
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   135
  have "mono (\<lambda>s. p \<union> \<AX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   136
  then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   137
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   138
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   139
lemma EG_fp: "\<EG> p = p \<inter> \<EX> \<EG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   140
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   141
  have "mono (\<lambda>s. p \<inter> \<EX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   142
  then show ?thesis by (simp only: EG_def) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   143
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   144
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   145
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   146
  From the greatest fixed point definition of @{term "\<AG> p"}, we derive as
wenzelm
parents: 61933
diff changeset
   147
  a consequence of the Knaster-Tarski theorem on the one hand that @{term
wenzelm
parents: 61933
diff changeset
   148
  "\<AG> p"} is a fixed point of the monotonic function
wenzelm
parents: 61933
diff changeset
   149
  @{term "\<lambda>s. p \<inter> \<AX> s"}.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   150
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   151
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   152
lemma AG_fp: "\<AG> p = p \<inter> \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   153
proof -
46685
866a798d051c tuned proofs;
wenzelm
parents: 46008
diff changeset
   154
  have "mono (\<lambda>s. p \<inter> \<AX> s)" by rule auto
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   155
  then show ?thesis by (simp only: AG_gfp) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   156
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   157
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   158
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   159
  This fact may be split up into two inequalities (merely using transitivity
wenzelm
parents: 61933
diff changeset
   160
  of \<open>\<subseteq>\<close>, which is an instance of the overloaded \<open>\<le>\<close> in Isabelle/HOL).
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   161
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   162
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   163
lemma AG_fp_1: "\<AG> p \<subseteq> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   164
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   165
  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   166
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   167
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   168
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   169
lemma AG_fp_2: "\<AG> p \<subseteq> \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   170
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   171
  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> \<AX> \<AG> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   172
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   173
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   174
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   175
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   176
  On the other hand, we have from the Knaster-Tarski fixed point theorem that
wenzelm
parents: 61933
diff changeset
   177
  any other post-fixed point of @{term "\<lambda>s. p \<inter> \<AX> s"} is smaller than
wenzelm
parents: 61933
diff changeset
   178
  @{term "\<AG> p"}. A post-fixed point is a set of states @{term q} such that
wenzelm
parents: 61933
diff changeset
   179
  @{term "q \<subseteq> p \<inter> \<AX> q"}. This leads to the following co-induction
wenzelm
parents: 61933
diff changeset
   180
  principle for @{term "\<AG> p"}.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   181
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   182
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   183
lemma AG_I: "q \<subseteq> p \<inter> \<AX> q \<Longrightarrow> q \<subseteq> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   184
  by (simp only: AG_gfp) (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   185
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   186
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   187
subsection \<open>The tree induction principle \label{sec:calc-ctl-tree-induct}\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   188
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   189
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   190
  With the most basic facts available, we are now able to establish a few more
wenzelm
parents: 61933
diff changeset
   191
  interesting results, leading to the \<^emph>\<open>tree induction\<close> principle for \<open>\<AG>\<close>
wenzelm
parents: 61933
diff changeset
   192
  (see below). We will use some elementary monotonicity and distributivity
wenzelm
parents: 61933
diff changeset
   193
  rules.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   194
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   195
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   196
lemma AX_int: "\<AX> (p \<inter> q) = \<AX> p \<inter> \<AX> q" by auto 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   197
lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<AX> p \<subseteq> \<AX> q" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   198
lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<AG> p \<subseteq> \<AG> q"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   199
  by (simp only: AG_gfp, rule gfp_mono) auto 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   200
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   201
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   202
  The formula @{term "AG p"} implies @{term "AX p"} (we use substitution of
wenzelm
parents: 61933
diff changeset
   203
  \<open>\<subseteq>\<close> with monotonicity).
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   204
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   205
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   206
lemma AG_AX: "\<AG> p \<subseteq> \<AX> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   207
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   208
  have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
61934
wenzelm
parents: 61933
diff changeset
   209
  also have "\<AG> p \<subseteq> p" by (rule AG_fp_1)
wenzelm
parents: 61933
diff changeset
   210
  moreover note AX_mono
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   211
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   212
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   213
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   214
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   215
  Furthermore we show idempotency of the \<open>\<AG>\<close> operator. The proof is a good
wenzelm
parents: 61933
diff changeset
   216
  example of how accumulated facts may get used to feed a single rule step.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   217
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   218
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   219
lemma AG_AG: "\<AG> \<AG> p = \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   220
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   221
  show "\<AG> \<AG> p \<subseteq> \<AG> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   222
next
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   223
  show "\<AG> p \<subseteq> \<AG> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   224
  proof (rule AG_I)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   225
    have "\<AG> p \<subseteq> \<AG> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   226
    moreover have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   227
    ultimately show "\<AG> p \<subseteq> \<AG> p \<inter> \<AX> \<AG> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   228
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   229
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   230
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   231
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   232
  \<^smallskip>
wenzelm
parents: 61933
diff changeset
   233
  We now give an alternative characterization of the \<open>\<AG>\<close> operator, which
wenzelm
parents: 61933
diff changeset
   234
  describes the \<open>\<AG>\<close> operator in an ``operational'' way by tree induction:
wenzelm
parents: 61933
diff changeset
   235
  In a state holds @{term "AG p"} iff in that state holds @{term p}, and in
wenzelm
parents: 61933
diff changeset
   236
  all reachable states @{term s} follows from the fact that @{term p} holds in
wenzelm
parents: 61933
diff changeset
   237
  @{term s}, that @{term p} also holds in all successor states of @{term s}.
wenzelm
parents: 61933
diff changeset
   238
  We use the co-induction principle @{thm [source] AG_I} to establish this in
wenzelm
parents: 61933
diff changeset
   239
  a purely algebraic manner.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   240
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   241
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   242
theorem AG_induct: "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   243
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   244
  show "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> p"  (is "?lhs \<subseteq> _")
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   245
  proof (rule AG_I)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   246
    show "?lhs \<subseteq> p \<inter> \<AX> ?lhs"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   247
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   248
      show "?lhs \<subseteq> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   249
      show "?lhs \<subseteq> \<AX> ?lhs"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   250
      proof -
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   251
        {
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   252
          have "\<AG> (p \<rightarrow> \<AX> p) \<subseteq> p \<rightarrow> \<AX> p" by (rule AG_fp_1)
46008
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 42463
diff changeset
   253
          also have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 42463
diff changeset
   254
          finally have "?lhs \<subseteq> \<AX> p" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   255
        }  
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   256
        moreover
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   257
        {
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   258
          have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> (p \<rightarrow> \<AX> p)" ..
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   259
          also have "\<dots> \<subseteq> \<AX> \<dots>" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   260
          finally have "?lhs \<subseteq> \<AX> \<AG> (p \<rightarrow> \<AX> p)" .
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   261
        }  
46008
c296c75f4cf4 reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents: 42463
diff changeset
   262
        ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   263
        also have "\<dots> = \<AX> ?lhs" by (simp only: AX_int)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32587
diff changeset
   264
        finally show ?thesis .
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   265
      qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   266
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   267
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   268
next
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   269
  show "\<AG> p \<subseteq> p \<inter> \<AG> (p \<rightarrow> \<AX> p)"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   270
  proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   271
    show "\<AG> p \<subseteq> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   272
    show "\<AG> p \<subseteq> \<AG> (p \<rightarrow> \<AX> p)"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   273
    proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   274
      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   275
      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX) moreover note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   276
      also have "\<AX> p \<subseteq> (p \<rightarrow> \<AX> p)" .. moreover note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   277
      finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   278
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   279
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   280
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   281
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   282
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   283
subsection \<open>An application of tree induction \label{sec:calc-ctl-commute}\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   284
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   285
text \<open>
61934
wenzelm
parents: 61933
diff changeset
   286
  Further interesting properties of CTL expressions may be demonstrated with
wenzelm
parents: 61933
diff changeset
   287
  the help of tree induction; here we show that \<open>\<AX>\<close> and \<open>\<AG>\<close> commute.
61343
5b5656a63bd6 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   288
\<close>
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   289
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   290
theorem AG_AX_commute: "\<AG> \<AX> p = \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   291
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   292
  have "\<AG> \<AX> p = \<AX> p \<inter> \<AX> \<AG> \<AX> p" by (rule AG_fp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   293
  also have "\<dots> = \<AX> (p \<inter> \<AG> \<AX> p)" by (simp only: AX_int)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   294
  also have "p \<inter> \<AG> \<AX> p = \<AG> p"  (is "?lhs = _")
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   295
  proof  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   296
    have "\<AX> p \<subseteq> p \<rightarrow> \<AX> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   297
    also have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p" by (rule AG_induct)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   298
    also note Int_mono AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   299
    ultimately show "?lhs \<subseteq> \<AG> p" by fast
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   300
  next  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   301
    have "\<AG> p \<subseteq> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   302
    moreover 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   303
    {
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   304
      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   305
      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   306
      also note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   307
      ultimately have "\<AG> p \<subseteq> \<AG> \<AX> p" .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   308
    } 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   309
    ultimately show "\<AG> p \<subseteq> ?lhs" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   310
  qed  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   311
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   312
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   313
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   314
end