author | haftmann |
Tue, 19 Nov 2013 10:05:53 +0100 | |
changeset 54489 | 03ff4d1e6784 |
parent 54281 | b01057e72233 |
child 54863 | 82acc20ded73 |
permissions | -rw-r--r-- |
51523 | 1 |
(* Title: HOL/Real.thy |
2 |
Author: Jacques D. Fleuriot, University of Edinburgh, 1998 |
|
3 |
Author: Larry Paulson, University of Cambridge |
|
4 |
Author: Jeremy Avigad, Carnegie Mellon University |
|
5 |
Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen |
|
6 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 |
|
7 |
Construction of Cauchy Reals by Brian Huffman, 2010 |
|
8 |
*) |
|
9 |
||
10 |
header {* Development of the Reals using Cauchy Sequences *} |
|
11 |
||
12 |
theory Real |
|
51773 | 13 |
imports Rat Conditionally_Complete_Lattices |
51523 | 14 |
begin |
15 |
||
16 |
text {* |
|
17 |
This theory contains a formalization of the real numbers as |
|
18 |
equivalence classes of Cauchy sequences of rationals. See |
|
19 |
@{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative |
|
20 |
construction using Dedekind cuts. |
|
21 |
*} |
|
22 |
||
23 |
subsection {* Preliminary lemmas *} |
|
24 |
||
25 |
lemma add_diff_add: |
|
26 |
fixes a b c d :: "'a::ab_group_add" |
|
27 |
shows "(a + c) - (b + d) = (a - b) + (c - d)" |
|
28 |
by simp |
|
29 |
||
30 |
lemma minus_diff_minus: |
|
31 |
fixes a b :: "'a::ab_group_add" |
|
32 |
shows "- a - - b = - (a - b)" |
|
33 |
by simp |
|
34 |
||
35 |
lemma mult_diff_mult: |
|
36 |
fixes x y a b :: "'a::ring" |
|
37 |
shows "(x * y - a * b) = x * (y - b) + (x - a) * b" |
|
38 |
by (simp add: algebra_simps) |
|
39 |
||
40 |
lemma inverse_diff_inverse: |
|
41 |
fixes a b :: "'a::division_ring" |
|
42 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
|
43 |
shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)" |
|
44 |
using assms by (simp add: algebra_simps) |
|
45 |
||
46 |
lemma obtain_pos_sum: |
|
47 |
fixes r :: rat assumes r: "0 < r" |
|
48 |
obtains s t where "0 < s" and "0 < t" and "r = s + t" |
|
49 |
proof |
|
50 |
from r show "0 < r/2" by simp |
|
51 |
from r show "0 < r/2" by simp |
|
52 |
show "r = r/2 + r/2" by simp |
|
53 |
qed |
|
54 |
||
55 |
subsection {* Sequences that converge to zero *} |
|
56 |
||
57 |
definition |
|
58 |
vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" |
|
59 |
where |
|
60 |
"vanishes X = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)" |
|
61 |
||
62 |
lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X" |
|
63 |
unfolding vanishes_def by simp |
|
64 |
||
65 |
lemma vanishesD: "\<lbrakk>vanishes X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r" |
|
66 |
unfolding vanishes_def by simp |
|
67 |
||
68 |
lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0" |
|
69 |
unfolding vanishes_def |
|
70 |
apply (cases "c = 0", auto) |
|
71 |
apply (rule exI [where x="\<bar>c\<bar>"], auto) |
|
72 |
done |
|
73 |
||
74 |
lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)" |
|
75 |
unfolding vanishes_def by simp |
|
76 |
||
77 |
lemma vanishes_add: |
|
78 |
assumes X: "vanishes X" and Y: "vanishes Y" |
|
79 |
shows "vanishes (\<lambda>n. X n + Y n)" |
|
80 |
proof (rule vanishesI) |
|
81 |
fix r :: rat assume "0 < r" |
|
82 |
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
|
83 |
by (rule obtain_pos_sum) |
|
84 |
obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s" |
|
85 |
using vanishesD [OF X s] .. |
|
86 |
obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t" |
|
87 |
using vanishesD [OF Y t] .. |
|
88 |
have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r" |
|
89 |
proof (clarsimp) |
|
90 |
fix n assume n: "i \<le> n" "j \<le> n" |
|
91 |
have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>" by (rule abs_triangle_ineq) |
|
92 |
also have "\<dots> < s + t" by (simp add: add_strict_mono i j n) |
|
93 |
finally show "\<bar>X n + Y n\<bar> < r" unfolding r . |
|
94 |
qed |
|
95 |
thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" .. |
|
96 |
qed |
|
97 |
||
98 |
lemma vanishes_diff: |
|
99 |
assumes X: "vanishes X" and Y: "vanishes Y" |
|
100 |
shows "vanishes (\<lambda>n. X n - Y n)" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53652
diff
changeset
|
101 |
unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus X Y) |
51523 | 102 |
|
103 |
lemma vanishes_mult_bounded: |
|
104 |
assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a" |
|
105 |
assumes Y: "vanishes (\<lambda>n. Y n)" |
|
106 |
shows "vanishes (\<lambda>n. X n * Y n)" |
|
107 |
proof (rule vanishesI) |
|
108 |
fix r :: rat assume r: "0 < r" |
|
109 |
obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" |
|
110 |
using X by fast |
|
111 |
obtain b where b: "0 < b" "r = a * b" |
|
112 |
proof |
|
113 |
show "0 < r / a" using r a by (simp add: divide_pos_pos) |
|
114 |
show "r = a * (r / a)" using a by simp |
|
115 |
qed |
|
116 |
obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b" |
|
117 |
using vanishesD [OF Y b(1)] .. |
|
118 |
have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" |
|
119 |
by (simp add: b(2) abs_mult mult_strict_mono' a k) |
|
120 |
thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" .. |
|
121 |
qed |
|
122 |
||
123 |
subsection {* Cauchy sequences *} |
|
124 |
||
125 |
definition |
|
126 |
cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" |
|
127 |
where |
|
128 |
"cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)" |
|
129 |
||
130 |
lemma cauchyI: |
|
131 |
"(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X" |
|
132 |
unfolding cauchy_def by simp |
|
133 |
||
134 |
lemma cauchyD: |
|
135 |
"\<lbrakk>cauchy X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r" |
|
136 |
unfolding cauchy_def by simp |
|
137 |
||
138 |
lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)" |
|
139 |
unfolding cauchy_def by simp |
|
140 |
||
141 |
lemma cauchy_add [simp]: |
|
142 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
143 |
shows "cauchy (\<lambda>n. X n + Y n)" |
|
144 |
proof (rule cauchyI) |
|
145 |
fix r :: rat assume "0 < r" |
|
146 |
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
|
147 |
by (rule obtain_pos_sum) |
|
148 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" |
|
149 |
using cauchyD [OF X s] .. |
|
150 |
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" |
|
151 |
using cauchyD [OF Y t] .. |
|
152 |
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" |
|
153 |
proof (clarsimp) |
|
154 |
fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" |
|
155 |
have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>" |
|
156 |
unfolding add_diff_add by (rule abs_triangle_ineq) |
|
157 |
also have "\<dots> < s + t" |
|
158 |
by (rule add_strict_mono, simp_all add: i j *) |
|
159 |
finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" unfolding r . |
|
160 |
qed |
|
161 |
thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" .. |
|
162 |
qed |
|
163 |
||
164 |
lemma cauchy_minus [simp]: |
|
165 |
assumes X: "cauchy X" |
|
166 |
shows "cauchy (\<lambda>n. - X n)" |
|
167 |
using assms unfolding cauchy_def |
|
168 |
unfolding minus_diff_minus abs_minus_cancel . |
|
169 |
||
170 |
lemma cauchy_diff [simp]: |
|
171 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
172 |
shows "cauchy (\<lambda>n. X n - Y n)" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53652
diff
changeset
|
173 |
using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff) |
51523 | 174 |
|
175 |
lemma cauchy_imp_bounded: |
|
176 |
assumes "cauchy X" shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" |
|
177 |
proof - |
|
178 |
obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1" |
|
179 |
using cauchyD [OF assms zero_less_one] .. |
|
180 |
show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" |
|
181 |
proof (intro exI conjI allI) |
|
182 |
have "0 \<le> \<bar>X 0\<bar>" by simp |
|
183 |
also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp |
|
184 |
finally have "0 \<le> Max (abs ` X ` {..k})" . |
|
185 |
thus "0 < Max (abs ` X ` {..k}) + 1" by simp |
|
186 |
next |
|
187 |
fix n :: nat |
|
188 |
show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" |
|
189 |
proof (rule linorder_le_cases) |
|
190 |
assume "n \<le> k" |
|
191 |
hence "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp |
|
192 |
thus "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp |
|
193 |
next |
|
194 |
assume "k \<le> n" |
|
195 |
have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp |
|
196 |
also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>" |
|
197 |
by (rule abs_triangle_ineq) |
|
198 |
also have "\<dots> < Max (abs ` X ` {..k}) + 1" |
|
199 |
by (rule add_le_less_mono, simp, simp add: k `k \<le> n`) |
|
200 |
finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" . |
|
201 |
qed |
|
202 |
qed |
|
203 |
qed |
|
204 |
||
205 |
lemma cauchy_mult [simp]: |
|
206 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
207 |
shows "cauchy (\<lambda>n. X n * Y n)" |
|
208 |
proof (rule cauchyI) |
|
209 |
fix r :: rat assume "0 < r" |
|
210 |
then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v" |
|
211 |
by (rule obtain_pos_sum) |
|
212 |
obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" |
|
213 |
using cauchy_imp_bounded [OF X] by fast |
|
214 |
obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b" |
|
215 |
using cauchy_imp_bounded [OF Y] by fast |
|
216 |
obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b" |
|
217 |
proof |
|
218 |
show "0 < v/b" using v b(1) by (rule divide_pos_pos) |
|
219 |
show "0 < u/a" using u a(1) by (rule divide_pos_pos) |
|
220 |
show "r = a * (u/a) + (v/b) * b" |
|
221 |
using a(1) b(1) `r = u + v` by simp |
|
222 |
qed |
|
223 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" |
|
224 |
using cauchyD [OF X s] .. |
|
225 |
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" |
|
226 |
using cauchyD [OF Y t] .. |
|
227 |
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r" |
|
228 |
proof (clarsimp) |
|
229 |
fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" |
|
230 |
have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>" |
|
231 |
unfolding mult_diff_mult .. |
|
232 |
also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>" |
|
233 |
by (rule abs_triangle_ineq) |
|
234 |
also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>" |
|
235 |
unfolding abs_mult .. |
|
236 |
also have "\<dots> < a * t + s * b" |
|
237 |
by (simp_all add: add_strict_mono mult_strict_mono' a b i j *) |
|
238 |
finally show "\<bar>X m * Y m - X n * Y n\<bar> < r" unfolding r . |
|
239 |
qed |
|
240 |
thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" .. |
|
241 |
qed |
|
242 |
||
243 |
lemma cauchy_not_vanishes_cases: |
|
244 |
assumes X: "cauchy X" |
|
245 |
assumes nz: "\<not> vanishes X" |
|
246 |
shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)" |
|
247 |
proof - |
|
248 |
obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>" |
|
249 |
using nz unfolding vanishes_def by (auto simp add: not_less) |
|
250 |
obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t" |
|
251 |
using `0 < r` by (rule obtain_pos_sum) |
|
252 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" |
|
253 |
using cauchyD [OF X s] .. |
|
254 |
obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>" |
|
255 |
using r by fast |
|
256 |
have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s" |
|
257 |
using i `i \<le> k` by auto |
|
258 |
have "X k \<le> - r \<or> r \<le> X k" |
|
259 |
using `r \<le> \<bar>X k\<bar>` by auto |
|
260 |
hence "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" |
|
261 |
unfolding `r = s + t` using k by auto |
|
262 |
hence "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" .. |
|
263 |
thus "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" |
|
264 |
using t by auto |
|
265 |
qed |
|
266 |
||
267 |
lemma cauchy_not_vanishes: |
|
268 |
assumes X: "cauchy X" |
|
269 |
assumes nz: "\<not> vanishes X" |
|
270 |
shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>" |
|
271 |
using cauchy_not_vanishes_cases [OF assms] |
|
272 |
by clarify (rule exI, erule conjI, rule_tac x=k in exI, auto) |
|
273 |
||
274 |
lemma cauchy_inverse [simp]: |
|
275 |
assumes X: "cauchy X" |
|
276 |
assumes nz: "\<not> vanishes X" |
|
277 |
shows "cauchy (\<lambda>n. inverse (X n))" |
|
278 |
proof (rule cauchyI) |
|
279 |
fix r :: rat assume "0 < r" |
|
280 |
obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>" |
|
281 |
using cauchy_not_vanishes [OF X nz] by fast |
|
282 |
from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto |
|
283 |
obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b" |
|
284 |
proof |
|
285 |
show "0 < b * r * b" |
|
286 |
by (simp add: `0 < r` b mult_pos_pos) |
|
287 |
show "r = inverse b * (b * r * b) * inverse b" |
|
288 |
using b by simp |
|
289 |
qed |
|
290 |
obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s" |
|
291 |
using cauchyD [OF X s] .. |
|
292 |
have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r" |
|
293 |
proof (clarsimp) |
|
294 |
fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" |
|
295 |
have "\<bar>inverse (X m) - inverse (X n)\<bar> = |
|
296 |
inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>" |
|
297 |
by (simp add: inverse_diff_inverse nz * abs_mult) |
|
298 |
also have "\<dots> < inverse b * s * inverse b" |
|
299 |
by (simp add: mult_strict_mono less_imp_inverse_less |
|
300 |
mult_pos_pos i j b * s) |
|
301 |
finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" unfolding r . |
|
302 |
qed |
|
303 |
thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" .. |
|
304 |
qed |
|
305 |
||
306 |
lemma vanishes_diff_inverse: |
|
307 |
assumes X: "cauchy X" "\<not> vanishes X" |
|
308 |
assumes Y: "cauchy Y" "\<not> vanishes Y" |
|
309 |
assumes XY: "vanishes (\<lambda>n. X n - Y n)" |
|
310 |
shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))" |
|
311 |
proof (rule vanishesI) |
|
312 |
fix r :: rat assume r: "0 < r" |
|
313 |
obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>" |
|
314 |
using cauchy_not_vanishes [OF X] by fast |
|
315 |
obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>" |
|
316 |
using cauchy_not_vanishes [OF Y] by fast |
|
317 |
obtain s where s: "0 < s" and "inverse a * s * inverse b = r" |
|
318 |
proof |
|
319 |
show "0 < a * r * b" |
|
320 |
using a r b by (simp add: mult_pos_pos) |
|
321 |
show "inverse a * (a * r * b) * inverse b = r" |
|
322 |
using a r b by simp |
|
323 |
qed |
|
324 |
obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s" |
|
325 |
using vanishesD [OF XY s] .. |
|
326 |
have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" |
|
327 |
proof (clarsimp) |
|
328 |
fix n assume n: "i \<le> n" "j \<le> n" "k \<le> n" |
|
329 |
have "X n \<noteq> 0" and "Y n \<noteq> 0" |
|
330 |
using i j a b n by auto |
|
331 |
hence "\<bar>inverse (X n) - inverse (Y n)\<bar> = |
|
332 |
inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>" |
|
333 |
by (simp add: inverse_diff_inverse abs_mult) |
|
334 |
also have "\<dots> < inverse a * s * inverse b" |
|
335 |
apply (intro mult_strict_mono' less_imp_inverse_less) |
|
336 |
apply (simp_all add: a b i j k n mult_nonneg_nonneg) |
|
337 |
done |
|
338 |
also note `inverse a * s * inverse b = r` |
|
339 |
finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" . |
|
340 |
qed |
|
341 |
thus "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" .. |
|
342 |
qed |
|
343 |
||
344 |
subsection {* Equivalence relation on Cauchy sequences *} |
|
345 |
||
346 |
definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool" |
|
347 |
where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))" |
|
348 |
||
349 |
lemma realrelI [intro?]: |
|
350 |
assumes "cauchy X" and "cauchy Y" and "vanishes (\<lambda>n. X n - Y n)" |
|
351 |
shows "realrel X Y" |
|
352 |
using assms unfolding realrel_def by simp |
|
353 |
||
354 |
lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X" |
|
355 |
unfolding realrel_def by simp |
|
356 |
||
357 |
lemma symp_realrel: "symp realrel" |
|
358 |
unfolding realrel_def |
|
359 |
by (rule sympI, clarify, drule vanishes_minus, simp) |
|
360 |
||
361 |
lemma transp_realrel: "transp realrel" |
|
362 |
unfolding realrel_def |
|
363 |
apply (rule transpI, clarify) |
|
364 |
apply (drule (1) vanishes_add) |
|
365 |
apply (simp add: algebra_simps) |
|
366 |
done |
|
367 |
||
368 |
lemma part_equivp_realrel: "part_equivp realrel" |
|
369 |
by (fast intro: part_equivpI symp_realrel transp_realrel |
|
370 |
realrel_refl cauchy_const) |
|
371 |
||
372 |
subsection {* The field of real numbers *} |
|
373 |
||
374 |
quotient_type real = "nat \<Rightarrow> rat" / partial: realrel |
|
375 |
morphisms rep_real Real |
|
376 |
by (rule part_equivp_realrel) |
|
377 |
||
378 |
lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)" |
|
379 |
unfolding real.pcr_cr_eq cr_real_def realrel_def by auto |
|
380 |
||
381 |
lemma Real_induct [induct type: real]: (* TODO: generate automatically *) |
|
382 |
assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)" shows "P x" |
|
383 |
proof (induct x) |
|
384 |
case (1 X) |
|
385 |
hence "cauchy X" by (simp add: realrel_def) |
|
386 |
thus "P (Real X)" by (rule assms) |
|
387 |
qed |
|
388 |
||
389 |
lemma eq_Real: |
|
390 |
"cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)" |
|
391 |
using real.rel_eq_transfer |
|
392 |
unfolding real.pcr_cr_eq cr_real_def fun_rel_def realrel_def by simp |
|
393 |
||
51956
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
kuncar
parents:
51775
diff
changeset
|
394 |
lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy" |
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
kuncar
parents:
51775
diff
changeset
|
395 |
by (simp add: real.domain_eq realrel_def) |
51523 | 396 |
|
397 |
instantiation real :: field_inverse_zero |
|
398 |
begin |
|
399 |
||
400 |
lift_definition zero_real :: "real" is "\<lambda>n. 0" |
|
401 |
by (simp add: realrel_refl) |
|
402 |
||
403 |
lift_definition one_real :: "real" is "\<lambda>n. 1" |
|
404 |
by (simp add: realrel_refl) |
|
405 |
||
406 |
lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n" |
|
407 |
unfolding realrel_def add_diff_add |
|
408 |
by (simp only: cauchy_add vanishes_add simp_thms) |
|
409 |
||
410 |
lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n" |
|
411 |
unfolding realrel_def minus_diff_minus |
|
412 |
by (simp only: cauchy_minus vanishes_minus simp_thms) |
|
413 |
||
414 |
lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n" |
|
415 |
unfolding realrel_def mult_diff_mult |
|
416 |
by (subst (4) mult_commute, simp only: cauchy_mult vanishes_add |
|
417 |
vanishes_mult_bounded cauchy_imp_bounded simp_thms) |
|
418 |
||
419 |
lift_definition inverse_real :: "real \<Rightarrow> real" |
|
420 |
is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))" |
|
421 |
proof - |
|
422 |
fix X Y assume "realrel X Y" |
|
423 |
hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)" |
|
424 |
unfolding realrel_def by simp_all |
|
425 |
have "vanishes X \<longleftrightarrow> vanishes Y" |
|
426 |
proof |
|
427 |
assume "vanishes X" |
|
428 |
from vanishes_diff [OF this XY] show "vanishes Y" by simp |
|
429 |
next |
|
430 |
assume "vanishes Y" |
|
431 |
from vanishes_add [OF this XY] show "vanishes X" by simp |
|
432 |
qed |
|
433 |
thus "?thesis X Y" |
|
434 |
unfolding realrel_def |
|
435 |
by (simp add: vanishes_diff_inverse X Y XY) |
|
436 |
qed |
|
437 |
||
438 |
definition |
|
439 |
"x - y = (x::real) + - y" |
|
440 |
||
441 |
definition |
|
442 |
"x / y = (x::real) * inverse y" |
|
443 |
||
444 |
lemma add_Real: |
|
445 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
446 |
shows "Real X + Real Y = Real (\<lambda>n. X n + Y n)" |
|
447 |
using assms plus_real.transfer |
|
448 |
unfolding cr_real_eq fun_rel_def by simp |
|
449 |
||
450 |
lemma minus_Real: |
|
451 |
assumes X: "cauchy X" |
|
452 |
shows "- Real X = Real (\<lambda>n. - X n)" |
|
453 |
using assms uminus_real.transfer |
|
454 |
unfolding cr_real_eq fun_rel_def by simp |
|
455 |
||
456 |
lemma diff_Real: |
|
457 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
458 |
shows "Real X - Real Y = Real (\<lambda>n. X n - Y n)" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53652
diff
changeset
|
459 |
unfolding minus_real_def |
51523 | 460 |
by (simp add: minus_Real add_Real X Y) |
461 |
||
462 |
lemma mult_Real: |
|
463 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
464 |
shows "Real X * Real Y = Real (\<lambda>n. X n * Y n)" |
|
465 |
using assms times_real.transfer |
|
466 |
unfolding cr_real_eq fun_rel_def by simp |
|
467 |
||
468 |
lemma inverse_Real: |
|
469 |
assumes X: "cauchy X" |
|
470 |
shows "inverse (Real X) = |
|
471 |
(if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))" |
|
472 |
using assms inverse_real.transfer zero_real.transfer |
|
473 |
unfolding cr_real_eq fun_rel_def by (simp split: split_if_asm, metis) |
|
474 |
||
475 |
instance proof |
|
476 |
fix a b c :: real |
|
477 |
show "a + b = b + a" |
|
478 |
by transfer (simp add: add_ac realrel_def) |
|
479 |
show "(a + b) + c = a + (b + c)" |
|
480 |
by transfer (simp add: add_ac realrel_def) |
|
481 |
show "0 + a = a" |
|
482 |
by transfer (simp add: realrel_def) |
|
483 |
show "- a + a = 0" |
|
484 |
by transfer (simp add: realrel_def) |
|
485 |
show "a - b = a + - b" |
|
486 |
by (rule minus_real_def) |
|
487 |
show "(a * b) * c = a * (b * c)" |
|
488 |
by transfer (simp add: mult_ac realrel_def) |
|
489 |
show "a * b = b * a" |
|
490 |
by transfer (simp add: mult_ac realrel_def) |
|
491 |
show "1 * a = a" |
|
492 |
by transfer (simp add: mult_ac realrel_def) |
|
493 |
show "(a + b) * c = a * c + b * c" |
|
494 |
by transfer (simp add: distrib_right realrel_def) |
|
495 |
show "(0\<Colon>real) \<noteq> (1\<Colon>real)" |
|
496 |
by transfer (simp add: realrel_def) |
|
497 |
show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" |
|
498 |
apply transfer |
|
499 |
apply (simp add: realrel_def) |
|
500 |
apply (rule vanishesI) |
|
501 |
apply (frule (1) cauchy_not_vanishes, clarify) |
|
502 |
apply (rule_tac x=k in exI, clarify) |
|
503 |
apply (drule_tac x=n in spec, simp) |
|
504 |
done |
|
505 |
show "a / b = a * inverse b" |
|
506 |
by (rule divide_real_def) |
|
507 |
show "inverse (0::real) = 0" |
|
508 |
by transfer (simp add: realrel_def) |
|
509 |
qed |
|
510 |
||
511 |
end |
|
512 |
||
513 |
subsection {* Positive reals *} |
|
514 |
||
515 |
lift_definition positive :: "real \<Rightarrow> bool" |
|
516 |
is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" |
|
517 |
proof - |
|
518 |
{ fix X Y |
|
519 |
assume "realrel X Y" |
|
520 |
hence XY: "vanishes (\<lambda>n. X n - Y n)" |
|
521 |
unfolding realrel_def by simp_all |
|
522 |
assume "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" |
|
523 |
then obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n" |
|
524 |
by fast |
|
525 |
obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
|
526 |
using `0 < r` by (rule obtain_pos_sum) |
|
527 |
obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s" |
|
528 |
using vanishesD [OF XY s] .. |
|
529 |
have "\<forall>n\<ge>max i j. t < Y n" |
|
530 |
proof (clarsimp) |
|
531 |
fix n assume n: "i \<le> n" "j \<le> n" |
|
532 |
have "\<bar>X n - Y n\<bar> < s" and "r < X n" |
|
533 |
using i j n by simp_all |
|
534 |
thus "t < Y n" unfolding r by simp |
|
535 |
qed |
|
536 |
hence "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n" using t by fast |
|
537 |
} note 1 = this |
|
538 |
fix X Y assume "realrel X Y" |
|
539 |
hence "realrel X Y" and "realrel Y X" |
|
540 |
using symp_realrel unfolding symp_def by auto |
|
541 |
thus "?thesis X Y" |
|
542 |
by (safe elim!: 1) |
|
543 |
qed |
|
544 |
||
545 |
lemma positive_Real: |
|
546 |
assumes X: "cauchy X" |
|
547 |
shows "positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" |
|
548 |
using assms positive.transfer |
|
549 |
unfolding cr_real_eq fun_rel_def by simp |
|
550 |
||
551 |
lemma positive_zero: "\<not> positive 0" |
|
552 |
by transfer auto |
|
553 |
||
554 |
lemma positive_add: |
|
555 |
"positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" |
|
556 |
apply transfer |
|
557 |
apply (clarify, rename_tac a b i j) |
|
558 |
apply (rule_tac x="a + b" in exI, simp) |
|
559 |
apply (rule_tac x="max i j" in exI, clarsimp) |
|
560 |
apply (simp add: add_strict_mono) |
|
561 |
done |
|
562 |
||
563 |
lemma positive_mult: |
|
564 |
"positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" |
|
565 |
apply transfer |
|
566 |
apply (clarify, rename_tac a b i j) |
|
567 |
apply (rule_tac x="a * b" in exI, simp add: mult_pos_pos) |
|
568 |
apply (rule_tac x="max i j" in exI, clarsimp) |
|
569 |
apply (rule mult_strict_mono, auto) |
|
570 |
done |
|
571 |
||
572 |
lemma positive_minus: |
|
573 |
"\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" |
|
574 |
apply transfer |
|
575 |
apply (simp add: realrel_def) |
|
576 |
apply (drule (1) cauchy_not_vanishes_cases, safe, fast, fast) |
|
577 |
done |
|
578 |
||
579 |
instantiation real :: linordered_field_inverse_zero |
|
580 |
begin |
|
581 |
||
582 |
definition |
|
583 |
"x < y \<longleftrightarrow> positive (y - x)" |
|
584 |
||
585 |
definition |
|
586 |
"x \<le> (y::real) \<longleftrightarrow> x < y \<or> x = y" |
|
587 |
||
588 |
definition |
|
589 |
"abs (a::real) = (if a < 0 then - a else a)" |
|
590 |
||
591 |
definition |
|
592 |
"sgn (a::real) = (if a = 0 then 0 else if 0 < a then 1 else - 1)" |
|
593 |
||
594 |
instance proof |
|
595 |
fix a b c :: real |
|
596 |
show "\<bar>a\<bar> = (if a < 0 then - a else a)" |
|
597 |
by (rule abs_real_def) |
|
598 |
show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" |
|
599 |
unfolding less_eq_real_def less_real_def |
|
600 |
by (auto, drule (1) positive_add, simp_all add: positive_zero) |
|
601 |
show "a \<le> a" |
|
602 |
unfolding less_eq_real_def by simp |
|
603 |
show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" |
|
604 |
unfolding less_eq_real_def less_real_def |
|
605 |
by (auto, drule (1) positive_add, simp add: algebra_simps) |
|
606 |
show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" |
|
607 |
unfolding less_eq_real_def less_real_def |
|
608 |
by (auto, drule (1) positive_add, simp add: positive_zero) |
|
609 |
show "a \<le> b \<Longrightarrow> c + a \<le> c + b" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53652
diff
changeset
|
610 |
unfolding less_eq_real_def less_real_def by auto |
51523 | 611 |
(* FIXME: Procedure int_combine_numerals: c + b - (c + a) \<equiv> b + - a *) |
612 |
(* Should produce c + b - (c + a) \<equiv> b - a *) |
|
613 |
show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" |
|
614 |
by (rule sgn_real_def) |
|
615 |
show "a \<le> b \<or> b \<le> a" |
|
616 |
unfolding less_eq_real_def less_real_def |
|
617 |
by (auto dest!: positive_minus) |
|
618 |
show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" |
|
619 |
unfolding less_real_def |
|
620 |
by (drule (1) positive_mult, simp add: algebra_simps) |
|
621 |
qed |
|
622 |
||
623 |
end |
|
624 |
||
625 |
instantiation real :: distrib_lattice |
|
626 |
begin |
|
627 |
||
628 |
definition |
|
629 |
"(inf :: real \<Rightarrow> real \<Rightarrow> real) = min" |
|
630 |
||
631 |
definition |
|
632 |
"(sup :: real \<Rightarrow> real \<Rightarrow> real) = max" |
|
633 |
||
634 |
instance proof |
|
635 |
qed (auto simp add: inf_real_def sup_real_def min_max.sup_inf_distrib1) |
|
636 |
||
637 |
end |
|
638 |
||
639 |
lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)" |
|
640 |
apply (induct x) |
|
641 |
apply (simp add: zero_real_def) |
|
642 |
apply (simp add: one_real_def add_Real) |
|
643 |
done |
|
644 |
||
645 |
lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)" |
|
646 |
apply (cases x rule: int_diff_cases) |
|
647 |
apply (simp add: of_nat_Real diff_Real) |
|
648 |
done |
|
649 |
||
650 |
lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)" |
|
651 |
apply (induct x) |
|
652 |
apply (simp add: Fract_of_int_quotient of_rat_divide) |
|
653 |
apply (simp add: of_int_Real divide_inverse) |
|
654 |
apply (simp add: inverse_Real mult_Real) |
|
655 |
done |
|
656 |
||
657 |
instance real :: archimedean_field |
|
658 |
proof |
|
659 |
fix x :: real |
|
660 |
show "\<exists>z. x \<le> of_int z" |
|
661 |
apply (induct x) |
|
662 |
apply (frule cauchy_imp_bounded, clarify) |
|
663 |
apply (rule_tac x="ceiling b + 1" in exI) |
|
664 |
apply (rule less_imp_le) |
|
665 |
apply (simp add: of_int_Real less_real_def diff_Real positive_Real) |
|
666 |
apply (rule_tac x=1 in exI, simp add: algebra_simps) |
|
667 |
apply (rule_tac x=0 in exI, clarsimp) |
|
668 |
apply (rule le_less_trans [OF abs_ge_self]) |
|
669 |
apply (rule less_le_trans [OF _ le_of_int_ceiling]) |
|
670 |
apply simp |
|
671 |
done |
|
672 |
qed |
|
673 |
||
674 |
instantiation real :: floor_ceiling |
|
675 |
begin |
|
676 |
||
677 |
definition [code del]: |
|
678 |
"floor (x::real) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" |
|
679 |
||
680 |
instance proof |
|
681 |
fix x :: real |
|
682 |
show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)" |
|
683 |
unfolding floor_real_def using floor_exists1 by (rule theI') |
|
684 |
qed |
|
685 |
||
686 |
end |
|
687 |
||
688 |
subsection {* Completeness *} |
|
689 |
||
690 |
lemma not_positive_Real: |
|
691 |
assumes X: "cauchy X" |
|
692 |
shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)" |
|
693 |
unfolding positive_Real [OF X] |
|
694 |
apply (auto, unfold not_less) |
|
695 |
apply (erule obtain_pos_sum) |
|
696 |
apply (drule_tac x=s in spec, simp) |
|
697 |
apply (drule_tac r=t in cauchyD [OF X], clarify) |
|
698 |
apply (drule_tac x=k in spec, clarsimp) |
|
699 |
apply (rule_tac x=n in exI, clarify, rename_tac m) |
|
700 |
apply (drule_tac x=m in spec, simp) |
|
701 |
apply (drule_tac x=n in spec, simp) |
|
702 |
apply (drule spec, drule (1) mp, clarify, rename_tac i) |
|
703 |
apply (rule_tac x="max i k" in exI, simp) |
|
704 |
done |
|
705 |
||
706 |
lemma le_Real: |
|
707 |
assumes X: "cauchy X" and Y: "cauchy Y" |
|
708 |
shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)" |
|
709 |
unfolding not_less [symmetric, where 'a=real] less_real_def |
|
710 |
apply (simp add: diff_Real not_positive_Real X Y) |
|
711 |
apply (simp add: diff_le_eq add_ac) |
|
712 |
done |
|
713 |
||
714 |
lemma le_RealI: |
|
715 |
assumes Y: "cauchy Y" |
|
716 |
shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y" |
|
717 |
proof (induct x) |
|
718 |
fix X assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)" |
|
719 |
hence le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r" |
|
720 |
by (simp add: of_rat_Real le_Real) |
|
721 |
{ |
|
722 |
fix r :: rat assume "0 < r" |
|
723 |
then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" |
|
724 |
by (rule obtain_pos_sum) |
|
725 |
obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s" |
|
726 |
using cauchyD [OF Y s] .. |
|
727 |
obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t" |
|
728 |
using le [OF t] .. |
|
729 |
have "\<forall>n\<ge>max i j. X n \<le> Y n + r" |
|
730 |
proof (clarsimp) |
|
731 |
fix n assume n: "i \<le> n" "j \<le> n" |
|
732 |
have "X n \<le> Y i + t" using n j by simp |
|
733 |
moreover have "\<bar>Y i - Y n\<bar> < s" using n i by simp |
|
734 |
ultimately show "X n \<le> Y n + r" unfolding r by simp |
|
735 |
qed |
|
736 |
hence "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" .. |
|
737 |
} |
|
738 |
thus "Real X \<le> Real Y" |
|
739 |
by (simp add: of_rat_Real le_Real X Y) |
|
740 |
qed |
|
741 |
||
742 |
lemma Real_leI: |
|
743 |
assumes X: "cauchy X" |
|
744 |
assumes le: "\<forall>n. of_rat (X n) \<le> y" |
|
745 |
shows "Real X \<le> y" |
|
746 |
proof - |
|
747 |
have "- y \<le> - Real X" |
|
748 |
by (simp add: minus_Real X le_RealI of_rat_minus le) |
|
749 |
thus ?thesis by simp |
|
750 |
qed |
|
751 |
||
752 |
lemma less_RealD: |
|
753 |
assumes Y: "cauchy Y" |
|
754 |
shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)" |
|
755 |
by (erule contrapos_pp, simp add: not_less, erule Real_leI [OF Y]) |
|
756 |
||
757 |
lemma of_nat_less_two_power: |
|
758 |
"of_nat n < (2::'a::linordered_idom) ^ n" |
|
759 |
apply (induct n) |
|
760 |
apply simp |
|
761 |
apply (subgoal_tac "(1::'a) \<le> 2 ^ n") |
|
762 |
apply (drule (1) add_le_less_mono, simp) |
|
763 |
apply simp |
|
764 |
done |
|
765 |
||
766 |
lemma complete_real: |
|
767 |
fixes S :: "real set" |
|
768 |
assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z" |
|
769 |
shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" |
|
770 |
proof - |
|
771 |
obtain x where x: "x \<in> S" using assms(1) .. |
|
772 |
obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) .. |
|
773 |
||
774 |
def P \<equiv> "\<lambda>x. \<forall>y\<in>S. y \<le> of_rat x" |
|
775 |
obtain a where a: "\<not> P a" |
|
776 |
proof |
|
777 |
have "of_int (floor (x - 1)) \<le> x - 1" by (rule of_int_floor_le) |
|
778 |
also have "x - 1 < x" by simp |
|
779 |
finally have "of_int (floor (x - 1)) < x" . |
|
780 |
hence "\<not> x \<le> of_int (floor (x - 1))" by (simp only: not_le) |
|
781 |
then show "\<not> P (of_int (floor (x - 1)))" |
|
782 |
unfolding P_def of_rat_of_int_eq using x by fast |
|
783 |
qed |
|
784 |
obtain b where b: "P b" |
|
785 |
proof |
|
786 |
show "P (of_int (ceiling z))" |
|
787 |
unfolding P_def of_rat_of_int_eq |
|
788 |
proof |
|
789 |
fix y assume "y \<in> S" |
|
790 |
hence "y \<le> z" using z by simp |
|
791 |
also have "z \<le> of_int (ceiling z)" by (rule le_of_int_ceiling) |
|
792 |
finally show "y \<le> of_int (ceiling z)" . |
|
793 |
qed |
|
794 |
qed |
|
795 |
||
796 |
def avg \<equiv> "\<lambda>x y :: rat. x/2 + y/2" |
|
797 |
def bisect \<equiv> "\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y)" |
|
798 |
def A \<equiv> "\<lambda>n. fst ((bisect ^^ n) (a, b))" |
|
799 |
def B \<equiv> "\<lambda>n. snd ((bisect ^^ n) (a, b))" |
|
800 |
def C \<equiv> "\<lambda>n. avg (A n) (B n)" |
|
801 |
have A_0 [simp]: "A 0 = a" unfolding A_def by simp |
|
802 |
have B_0 [simp]: "B 0 = b" unfolding B_def by simp |
|
803 |
have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)" |
|
804 |
unfolding A_def B_def C_def bisect_def split_def by simp |
|
805 |
have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)" |
|
806 |
unfolding A_def B_def C_def bisect_def split_def by simp |
|
807 |
||
808 |
have width: "\<And>n. B n - A n = (b - a) / 2^n" |
|
809 |
apply (simp add: eq_divide_eq) |
|
810 |
apply (induct_tac n, simp) |
|
811 |
apply (simp add: C_def avg_def algebra_simps) |
|
812 |
done |
|
813 |
||
814 |
have twos: "\<And>y r :: rat. 0 < r \<Longrightarrow> \<exists>n. y / 2 ^ n < r" |
|
815 |
apply (simp add: divide_less_eq) |
|
816 |
apply (subst mult_commute) |
|
817 |
apply (frule_tac y=y in ex_less_of_nat_mult) |
|
818 |
apply clarify |
|
819 |
apply (rule_tac x=n in exI) |
|
820 |
apply (erule less_trans) |
|
821 |
apply (rule mult_strict_right_mono) |
|
822 |
apply (rule le_less_trans [OF _ of_nat_less_two_power]) |
|
823 |
apply simp |
|
824 |
apply assumption |
|
825 |
done |
|
826 |
||
827 |
have PA: "\<And>n. \<not> P (A n)" |
|
828 |
by (induct_tac n, simp_all add: a) |
|
829 |
have PB: "\<And>n. P (B n)" |
|
830 |
by (induct_tac n, simp_all add: b) |
|
831 |
have ab: "a < b" |
|
832 |
using a b unfolding P_def |
|
833 |
apply (clarsimp simp add: not_le) |
|
834 |
apply (drule (1) bspec) |
|
835 |
apply (drule (1) less_le_trans) |
|
836 |
apply (simp add: of_rat_less) |
|
837 |
done |
|
838 |
have AB: "\<And>n. A n < B n" |
|
839 |
by (induct_tac n, simp add: ab, simp add: C_def avg_def) |
|
840 |
have A_mono: "\<And>i j. i \<le> j \<Longrightarrow> A i \<le> A j" |
|
841 |
apply (auto simp add: le_less [where 'a=nat]) |
|
842 |
apply (erule less_Suc_induct) |
|
843 |
apply (clarsimp simp add: C_def avg_def) |
|
844 |
apply (simp add: add_divide_distrib [symmetric]) |
|
845 |
apply (rule AB [THEN less_imp_le]) |
|
846 |
apply simp |
|
847 |
done |
|
848 |
have B_mono: "\<And>i j. i \<le> j \<Longrightarrow> B j \<le> B i" |
|
849 |
apply (auto simp add: le_less [where 'a=nat]) |
|
850 |
apply (erule less_Suc_induct) |
|
851 |
apply (clarsimp simp add: C_def avg_def) |
|
852 |
apply (simp add: add_divide_distrib [symmetric]) |
|
853 |
apply (rule AB [THEN less_imp_le]) |
|
854 |
apply simp |
|
855 |
done |
|
856 |
have cauchy_lemma: |
|
857 |
"\<And>X. \<forall>n. \<forall>i\<ge>n. A n \<le> X i \<and> X i \<le> B n \<Longrightarrow> cauchy X" |
|
858 |
apply (rule cauchyI) |
|
859 |
apply (drule twos [where y="b - a"]) |
|
860 |
apply (erule exE) |
|
861 |
apply (rule_tac x=n in exI, clarify, rename_tac i j) |
|
862 |
apply (rule_tac y="B n - A n" in le_less_trans) defer |
|
863 |
apply (simp add: width) |
|
864 |
apply (drule_tac x=n in spec) |
|
865 |
apply (frule_tac x=i in spec, drule (1) mp) |
|
866 |
apply (frule_tac x=j in spec, drule (1) mp) |
|
867 |
apply (frule A_mono, drule B_mono) |
|
868 |
apply (frule A_mono, drule B_mono) |
|
869 |
apply arith |
|
870 |
done |
|
871 |
have "cauchy A" |
|
872 |
apply (rule cauchy_lemma [rule_format]) |
|
873 |
apply (simp add: A_mono) |
|
874 |
apply (erule order_trans [OF less_imp_le [OF AB] B_mono]) |
|
875 |
done |
|
876 |
have "cauchy B" |
|
877 |
apply (rule cauchy_lemma [rule_format]) |
|
878 |
apply (simp add: B_mono) |
|
879 |
apply (erule order_trans [OF A_mono less_imp_le [OF AB]]) |
|
880 |
done |
|
881 |
have 1: "\<forall>x\<in>S. x \<le> Real B" |
|
882 |
proof |
|
883 |
fix x assume "x \<in> S" |
|
884 |
then show "x \<le> Real B" |
|
885 |
using PB [unfolded P_def] `cauchy B` |
|
886 |
by (simp add: le_RealI) |
|
887 |
qed |
|
888 |
have 2: "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z" |
|
889 |
apply clarify |
|
890 |
apply (erule contrapos_pp) |
|
891 |
apply (simp add: not_le) |
|
892 |
apply (drule less_RealD [OF `cauchy A`], clarify) |
|
893 |
apply (subgoal_tac "\<not> P (A n)") |
|
894 |
apply (simp add: P_def not_le, clarify) |
|
895 |
apply (erule rev_bexI) |
|
896 |
apply (erule (1) less_trans) |
|
897 |
apply (simp add: PA) |
|
898 |
done |
|
899 |
have "vanishes (\<lambda>n. (b - a) / 2 ^ n)" |
|
900 |
proof (rule vanishesI) |
|
901 |
fix r :: rat assume "0 < r" |
|
902 |
then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r" |
|
903 |
using twos by fast |
|
904 |
have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" |
|
905 |
proof (clarify) |
|
906 |
fix n assume n: "k \<le> n" |
|
907 |
have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n" |
|
908 |
by simp |
|
909 |
also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k" |
|
910 |
using n by (simp add: divide_left_mono mult_pos_pos) |
|
911 |
also note k |
|
912 |
finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" . |
|
913 |
qed |
|
914 |
thus "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" .. |
|
915 |
qed |
|
916 |
hence 3: "Real B = Real A" |
|
917 |
by (simp add: eq_Real `cauchy A` `cauchy B` width) |
|
918 |
show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" |
|
919 |
using 1 2 3 by (rule_tac x="Real B" in exI, simp) |
|
920 |
qed |
|
921 |
||
51775
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents:
51773
diff
changeset
|
922 |
instantiation real :: linear_continuum |
51523 | 923 |
begin |
924 |
||
925 |
subsection{*Supremum of a set of reals*} |
|
926 |
||
54281 | 927 |
definition "Sup X = (LEAST z::real. \<forall>x\<in>X. x \<le> z)" |
928 |
definition "Inf (X::real set) = - Sup (uminus ` X)" |
|
51523 | 929 |
|
930 |
instance |
|
931 |
proof |
|
54258
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents:
54230
diff
changeset
|
932 |
{ fix x :: real and X :: "real set" |
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents:
54230
diff
changeset
|
933 |
assume x: "x \<in> X" "bdd_above X" |
51523 | 934 |
then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" |
54258
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents:
54230
diff
changeset
|
935 |
using complete_real[of X] unfolding bdd_above_def by blast |
51523 | 936 |
then show "x \<le> Sup X" |
937 |
unfolding Sup_real_def by (rule LeastI2_order) (auto simp: x) } |
|
938 |
note Sup_upper = this |
|
939 |
||
940 |
{ fix z :: real and X :: "real set" |
|
941 |
assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z" |
|
942 |
then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" |
|
943 |
using complete_real[of X] by blast |
|
944 |
then have "Sup X = s" |
|
945 |
unfolding Sup_real_def by (best intro: Least_equality) |
|
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53076
diff
changeset
|
946 |
also from s z have "... \<le> z" |
51523 | 947 |
by blast |
948 |
finally show "Sup X \<le> z" . } |
|
949 |
note Sup_least = this |
|
950 |
||
54281 | 951 |
{ fix x :: real and X :: "real set" assume x: "x \<in> X" "bdd_below X" then show "Inf X \<le> x" |
952 |
using Sup_upper[of "-x" "uminus ` X"] by (auto simp: Inf_real_def) } |
|
953 |
{ fix z :: real and X :: "real set" assume "X \<noteq> {}" "\<And>x. x \<in> X \<Longrightarrow> z \<le> x" then show "z \<le> Inf X" |
|
954 |
using Sup_least[of "uminus ` X" "- z"] by (force simp: Inf_real_def) } |
|
51775
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents:
51773
diff
changeset
|
955 |
show "\<exists>a b::real. a \<noteq> b" |
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents:
51773
diff
changeset
|
956 |
using zero_neq_one by blast |
51523 | 957 |
qed |
958 |
end |
|
959 |
||
960 |
||
961 |
subsection {* Hiding implementation details *} |
|
962 |
||
963 |
hide_const (open) vanishes cauchy positive Real |
|
964 |
||
965 |
declare Real_induct [induct del] |
|
966 |
declare Abs_real_induct [induct del] |
|
967 |
declare Abs_real_cases [cases del] |
|
968 |
||
53652
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
kuncar
parents:
53374
diff
changeset
|
969 |
lifting_update real.lifting |
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
kuncar
parents:
53374
diff
changeset
|
970 |
lifting_forget real.lifting |
51956
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
kuncar
parents:
51775
diff
changeset
|
971 |
|
51523 | 972 |
subsection{*More Lemmas*} |
973 |
||
974 |
text {* BH: These lemmas should not be necessary; they should be |
|
975 |
covered by existing simp rules and simplification procedures. *} |
|
976 |
||
977 |
lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)" |
|
978 |
by simp (* redundant with mult_cancel_left *) |
|
979 |
||
980 |
lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)" |
|
981 |
by simp (* redundant with mult_cancel_right *) |
|
982 |
||
983 |
lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)" |
|
984 |
by simp (* solved by linordered_ring_less_cancel_factor simproc *) |
|
985 |
||
986 |
lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)" |
|
987 |
by simp (* solved by linordered_ring_le_cancel_factor simproc *) |
|
988 |
||
989 |
lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)" |
|
990 |
by simp (* solved by linordered_ring_le_cancel_factor simproc *) |
|
991 |
||
992 |
||
993 |
subsection {* Embedding numbers into the Reals *} |
|
994 |
||
995 |
abbreviation |
|
996 |
real_of_nat :: "nat \<Rightarrow> real" |
|
997 |
where |
|
998 |
"real_of_nat \<equiv> of_nat" |
|
999 |
||
1000 |
abbreviation |
|
1001 |
real_of_int :: "int \<Rightarrow> real" |
|
1002 |
where |
|
1003 |
"real_of_int \<equiv> of_int" |
|
1004 |
||
1005 |
abbreviation |
|
1006 |
real_of_rat :: "rat \<Rightarrow> real" |
|
1007 |
where |
|
1008 |
"real_of_rat \<equiv> of_rat" |
|
1009 |
||
1010 |
consts |
|
1011 |
(*overloaded constant for injecting other types into "real"*) |
|
1012 |
real :: "'a => real" |
|
1013 |
||
1014 |
defs (overloaded) |
|
1015 |
real_of_nat_def [code_unfold]: "real == real_of_nat" |
|
1016 |
real_of_int_def [code_unfold]: "real == real_of_int" |
|
1017 |
||
1018 |
declare [[coercion_enabled]] |
|
1019 |
declare [[coercion "real::nat\<Rightarrow>real"]] |
|
1020 |
declare [[coercion "real::int\<Rightarrow>real"]] |
|
1021 |
declare [[coercion "int"]] |
|
1022 |
||
1023 |
declare [[coercion_map map]] |
|
1024 |
declare [[coercion_map "% f g h x. g (h (f x))"]] |
|
1025 |
declare [[coercion_map "% f g (x,y) . (f x, g y)"]] |
|
1026 |
||
1027 |
lemma real_eq_of_nat: "real = of_nat" |
|
1028 |
unfolding real_of_nat_def .. |
|
1029 |
||
1030 |
lemma real_eq_of_int: "real = of_int" |
|
1031 |
unfolding real_of_int_def .. |
|
1032 |
||
1033 |
lemma real_of_int_zero [simp]: "real (0::int) = 0" |
|
1034 |
by (simp add: real_of_int_def) |
|
1035 |
||
1036 |
lemma real_of_one [simp]: "real (1::int) = (1::real)" |
|
1037 |
by (simp add: real_of_int_def) |
|
1038 |
||
1039 |
lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y" |
|
1040 |
by (simp add: real_of_int_def) |
|
1041 |
||
1042 |
lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)" |
|
1043 |
by (simp add: real_of_int_def) |
|
1044 |
||
1045 |
lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y" |
|
1046 |
by (simp add: real_of_int_def) |
|
1047 |
||
1048 |
lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y" |
|
1049 |
by (simp add: real_of_int_def) |
|
1050 |
||
1051 |
lemma real_of_int_power [simp]: "real (x ^ n) = real (x::int) ^ n" |
|
1052 |
by (simp add: real_of_int_def of_int_power) |
|
1053 |
||
1054 |
lemmas power_real_of_int = real_of_int_power [symmetric] |
|
1055 |
||
1056 |
lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))" |
|
1057 |
apply (subst real_eq_of_int)+ |
|
1058 |
apply (rule of_int_setsum) |
|
1059 |
done |
|
1060 |
||
1061 |
lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) = |
|
1062 |
(PROD x:A. real(f x))" |
|
1063 |
apply (subst real_eq_of_int)+ |
|
1064 |
apply (rule of_int_setprod) |
|
1065 |
done |
|
1066 |
||
1067 |
lemma real_of_int_zero_cancel [simp, algebra, presburger]: "(real x = 0) = (x = (0::int))" |
|
1068 |
by (simp add: real_of_int_def) |
|
1069 |
||
1070 |
lemma real_of_int_inject [iff, algebra, presburger]: "(real (x::int) = real y) = (x = y)" |
|
1071 |
by (simp add: real_of_int_def) |
|
1072 |
||
1073 |
lemma real_of_int_less_iff [iff, presburger]: "(real (x::int) < real y) = (x < y)" |
|
1074 |
by (simp add: real_of_int_def) |
|
1075 |
||
1076 |
lemma real_of_int_le_iff [simp, presburger]: "(real (x::int) \<le> real y) = (x \<le> y)" |
|
1077 |
by (simp add: real_of_int_def) |
|
1078 |
||
1079 |
lemma real_of_int_gt_zero_cancel_iff [simp, presburger]: "(0 < real (n::int)) = (0 < n)" |
|
1080 |
by (simp add: real_of_int_def) |
|
1081 |
||
1082 |
lemma real_of_int_ge_zero_cancel_iff [simp, presburger]: "(0 <= real (n::int)) = (0 <= n)" |
|
1083 |
by (simp add: real_of_int_def) |
|
1084 |
||
1085 |
lemma real_of_int_lt_zero_cancel_iff [simp, presburger]: "(real (n::int) < 0) = (n < 0)" |
|
1086 |
by (simp add: real_of_int_def) |
|
1087 |
||
1088 |
lemma real_of_int_le_zero_cancel_iff [simp, presburger]: "(real (n::int) <= 0) = (n <= 0)" |
|
1089 |
by (simp add: real_of_int_def) |
|
1090 |
||
1091 |
lemma one_less_real_of_int_cancel_iff: "1 < real (i :: int) \<longleftrightarrow> 1 < i" |
|
1092 |
unfolding real_of_one[symmetric] real_of_int_less_iff .. |
|
1093 |
||
1094 |
lemma one_le_real_of_int_cancel_iff: "1 \<le> real (i :: int) \<longleftrightarrow> 1 \<le> i" |
|
1095 |
unfolding real_of_one[symmetric] real_of_int_le_iff .. |
|
1096 |
||
1097 |
lemma real_of_int_less_one_cancel_iff: "real (i :: int) < 1 \<longleftrightarrow> i < 1" |
|
1098 |
unfolding real_of_one[symmetric] real_of_int_less_iff .. |
|
1099 |
||
1100 |
lemma real_of_int_le_one_cancel_iff: "real (i :: int) \<le> 1 \<longleftrightarrow> i \<le> 1" |
|
1101 |
unfolding real_of_one[symmetric] real_of_int_le_iff .. |
|
1102 |
||
1103 |
lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))" |
|
1104 |
by (auto simp add: abs_if) |
|
1105 |
||
1106 |
lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)" |
|
1107 |
apply (subgoal_tac "real n + 1 = real (n + 1)") |
|
1108 |
apply (simp del: real_of_int_add) |
|
1109 |
apply auto |
|
1110 |
done |
|
1111 |
||
1112 |
lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)" |
|
1113 |
apply (subgoal_tac "real m + 1 = real (m + 1)") |
|
1114 |
apply (simp del: real_of_int_add) |
|
1115 |
apply simp |
|
1116 |
done |
|
1117 |
||
1118 |
lemma real_of_int_div_aux: "(real (x::int)) / (real d) = |
|
1119 |
real (x div d) + (real (x mod d)) / (real d)" |
|
1120 |
proof - |
|
1121 |
have "x = (x div d) * d + x mod d" |
|
1122 |
by auto |
|
1123 |
then have "real x = real (x div d) * real d + real(x mod d)" |
|
1124 |
by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym]) |
|
1125 |
then have "real x / real d = ... / real d" |
|
1126 |
by simp |
|
1127 |
then show ?thesis |
|
1128 |
by (auto simp add: add_divide_distrib algebra_simps) |
|
1129 |
qed |
|
1130 |
||
1131 |
lemma real_of_int_div: "(d :: int) dvd n ==> |
|
1132 |
real(n div d) = real n / real d" |
|
1133 |
apply (subst real_of_int_div_aux) |
|
1134 |
apply simp |
|
1135 |
apply (simp add: dvd_eq_mod_eq_0) |
|
1136 |
done |
|
1137 |
||
1138 |
lemma real_of_int_div2: |
|
1139 |
"0 <= real (n::int) / real (x) - real (n div x)" |
|
1140 |
apply (case_tac "x = 0") |
|
1141 |
apply simp |
|
1142 |
apply (case_tac "0 < x") |
|
1143 |
apply (simp add: algebra_simps) |
|
1144 |
apply (subst real_of_int_div_aux) |
|
1145 |
apply simp |
|
1146 |
apply (subst zero_le_divide_iff) |
|
1147 |
apply auto |
|
1148 |
apply (simp add: algebra_simps) |
|
1149 |
apply (subst real_of_int_div_aux) |
|
1150 |
apply simp |
|
1151 |
apply (subst zero_le_divide_iff) |
|
1152 |
apply auto |
|
1153 |
done |
|
1154 |
||
1155 |
lemma real_of_int_div3: |
|
1156 |
"real (n::int) / real (x) - real (n div x) <= 1" |
|
1157 |
apply (simp add: algebra_simps) |
|
1158 |
apply (subst real_of_int_div_aux) |
|
1159 |
apply (auto simp add: divide_le_eq intro: order_less_imp_le) |
|
1160 |
done |
|
1161 |
||
1162 |
lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x" |
|
1163 |
by (insert real_of_int_div2 [of n x], simp) |
|
1164 |
||
1165 |
lemma Ints_real_of_int [simp]: "real (x::int) \<in> Ints" |
|
1166 |
unfolding real_of_int_def by (rule Ints_of_int) |
|
1167 |
||
1168 |
||
1169 |
subsection{*Embedding the Naturals into the Reals*} |
|
1170 |
||
1171 |
lemma real_of_nat_zero [simp]: "real (0::nat) = 0" |
|
1172 |
by (simp add: real_of_nat_def) |
|
1173 |
||
1174 |
lemma real_of_nat_1 [simp]: "real (1::nat) = 1" |
|
1175 |
by (simp add: real_of_nat_def) |
|
1176 |
||
1177 |
lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)" |
|
1178 |
by (simp add: real_of_nat_def) |
|
1179 |
||
1180 |
lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n" |
|
1181 |
by (simp add: real_of_nat_def) |
|
1182 |
||
1183 |
(*Not for addsimps: often the LHS is used to represent a positive natural*) |
|
1184 |
lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)" |
|
1185 |
by (simp add: real_of_nat_def) |
|
1186 |
||
1187 |
lemma real_of_nat_less_iff [iff]: |
|
1188 |
"(real (n::nat) < real m) = (n < m)" |
|
1189 |
by (simp add: real_of_nat_def) |
|
1190 |
||
1191 |
lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)" |
|
1192 |
by (simp add: real_of_nat_def) |
|
1193 |
||
1194 |
lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)" |
|
1195 |
by (simp add: real_of_nat_def) |
|
1196 |
||
1197 |
lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)" |
|
1198 |
by (simp add: real_of_nat_def del: of_nat_Suc) |
|
1199 |
||
1200 |
lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n" |
|
1201 |
by (simp add: real_of_nat_def of_nat_mult) |
|
1202 |
||
1203 |
lemma real_of_nat_power [simp]: "real (m ^ n) = real (m::nat) ^ n" |
|
1204 |
by (simp add: real_of_nat_def of_nat_power) |
|
1205 |
||
1206 |
lemmas power_real_of_nat = real_of_nat_power [symmetric] |
|
1207 |
||
1208 |
lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) = |
|
1209 |
(SUM x:A. real(f x))" |
|
1210 |
apply (subst real_eq_of_nat)+ |
|
1211 |
apply (rule of_nat_setsum) |
|
1212 |
done |
|
1213 |
||
1214 |
lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) = |
|
1215 |
(PROD x:A. real(f x))" |
|
1216 |
apply (subst real_eq_of_nat)+ |
|
1217 |
apply (rule of_nat_setprod) |
|
1218 |
done |
|
1219 |
||
1220 |
lemma real_of_card: "real (card A) = setsum (%x.1) A" |
|
1221 |
apply (subst card_eq_setsum) |
|
1222 |
apply (subst real_of_nat_setsum) |
|
1223 |
apply simp |
|
1224 |
done |
|
1225 |
||
1226 |
lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)" |
|
1227 |
by (simp add: real_of_nat_def) |
|
1228 |
||
1229 |
lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)" |
|
1230 |
by (simp add: real_of_nat_def) |
|
1231 |
||
1232 |
lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n" |
|
1233 |
by (simp add: add: real_of_nat_def of_nat_diff) |
|
1234 |
||
1235 |
lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)" |
|
1236 |
by (auto simp: real_of_nat_def) |
|
1237 |
||
1238 |
lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)" |
|
1239 |
by (simp add: add: real_of_nat_def) |
|
1240 |
||
1241 |
lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0" |
|
1242 |
by (simp add: add: real_of_nat_def) |
|
1243 |
||
1244 |
lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)" |
|
1245 |
apply (subgoal_tac "real n + 1 = real (Suc n)") |
|
1246 |
apply simp |
|
1247 |
apply (auto simp add: real_of_nat_Suc) |
|
1248 |
done |
|
1249 |
||
1250 |
lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)" |
|
1251 |
apply (subgoal_tac "real m + 1 = real (Suc m)") |
|
1252 |
apply (simp add: less_Suc_eq_le) |
|
1253 |
apply (simp add: real_of_nat_Suc) |
|
1254 |
done |
|
1255 |
||
1256 |
lemma real_of_nat_div_aux: "(real (x::nat)) / (real d) = |
|
1257 |
real (x div d) + (real (x mod d)) / (real d)" |
|
1258 |
proof - |
|
1259 |
have "x = (x div d) * d + x mod d" |
|
1260 |
by auto |
|
1261 |
then have "real x = real (x div d) * real d + real(x mod d)" |
|
1262 |
by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym]) |
|
1263 |
then have "real x / real d = \<dots> / real d" |
|
1264 |
by simp |
|
1265 |
then show ?thesis |
|
1266 |
by (auto simp add: add_divide_distrib algebra_simps) |
|
1267 |
qed |
|
1268 |
||
1269 |
lemma real_of_nat_div: "(d :: nat) dvd n ==> |
|
1270 |
real(n div d) = real n / real d" |
|
1271 |
by (subst real_of_nat_div_aux) |
|
1272 |
(auto simp add: dvd_eq_mod_eq_0 [symmetric]) |
|
1273 |
||
1274 |
lemma real_of_nat_div2: |
|
1275 |
"0 <= real (n::nat) / real (x) - real (n div x)" |
|
1276 |
apply (simp add: algebra_simps) |
|
1277 |
apply (subst real_of_nat_div_aux) |
|
1278 |
apply simp |
|
1279 |
apply (subst zero_le_divide_iff) |
|
1280 |
apply simp |
|
1281 |
done |
|
1282 |
||
1283 |
lemma real_of_nat_div3: |
|
1284 |
"real (n::nat) / real (x) - real (n div x) <= 1" |
|
1285 |
apply(case_tac "x = 0") |
|
1286 |
apply (simp) |
|
1287 |
apply (simp add: algebra_simps) |
|
1288 |
apply (subst real_of_nat_div_aux) |
|
1289 |
apply simp |
|
1290 |
done |
|
1291 |
||
1292 |
lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x" |
|
1293 |
by (insert real_of_nat_div2 [of n x], simp) |
|
1294 |
||
1295 |
lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n" |
|
1296 |
by (simp add: real_of_int_def real_of_nat_def) |
|
1297 |
||
1298 |
lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x" |
|
1299 |
apply (subgoal_tac "real(int(nat x)) = real(nat x)") |
|
1300 |
apply force |
|
1301 |
apply (simp only: real_of_int_of_nat_eq) |
|
1302 |
done |
|
1303 |
||
1304 |
lemma Nats_real_of_nat [simp]: "real (n::nat) \<in> Nats" |
|
1305 |
unfolding real_of_nat_def by (rule of_nat_in_Nats) |
|
1306 |
||
1307 |
lemma Ints_real_of_nat [simp]: "real (n::nat) \<in> Ints" |
|
1308 |
unfolding real_of_nat_def by (rule Ints_of_nat) |
|
1309 |
||
1310 |
subsection {* The Archimedean Property of the Reals *} |
|
1311 |
||
1312 |
theorem reals_Archimedean: |
|
1313 |
assumes x_pos: "0 < x" |
|
1314 |
shows "\<exists>n. inverse (real (Suc n)) < x" |
|
1315 |
unfolding real_of_nat_def using x_pos |
|
1316 |
by (rule ex_inverse_of_nat_Suc_less) |
|
1317 |
||
1318 |
lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)" |
|
1319 |
unfolding real_of_nat_def by (rule ex_less_of_nat) |
|
1320 |
||
1321 |
lemma reals_Archimedean3: |
|
1322 |
assumes x_greater_zero: "0 < x" |
|
1323 |
shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x" |
|
1324 |
unfolding real_of_nat_def using `0 < x` |
|
1325 |
by (auto intro: ex_less_of_nat_mult) |
|
1326 |
||
1327 |
||
1328 |
subsection{* Rationals *} |
|
1329 |
||
1330 |
lemma Rats_real_nat[simp]: "real(n::nat) \<in> \<rat>" |
|
1331 |
by (simp add: real_eq_of_nat) |
|
1332 |
||
1333 |
||
1334 |
lemma Rats_eq_int_div_int: |
|
1335 |
"\<rat> = { real(i::int)/real(j::int) |i j. j \<noteq> 0}" (is "_ = ?S") |
|
1336 |
proof |
|
1337 |
show "\<rat> \<subseteq> ?S" |
|
1338 |
proof |
|
1339 |
fix x::real assume "x : \<rat>" |
|
1340 |
then obtain r where "x = of_rat r" unfolding Rats_def .. |
|
1341 |
have "of_rat r : ?S" |
|
1342 |
by (cases r)(auto simp add:of_rat_rat real_eq_of_int) |
|
1343 |
thus "x : ?S" using `x = of_rat r` by simp |
|
1344 |
qed |
|
1345 |
next |
|
1346 |
show "?S \<subseteq> \<rat>" |
|
1347 |
proof(auto simp:Rats_def) |
|
1348 |
fix i j :: int assume "j \<noteq> 0" |
|
1349 |
hence "real i / real j = of_rat(Fract i j)" |
|
1350 |
by (simp add:of_rat_rat real_eq_of_int) |
|
1351 |
thus "real i / real j \<in> range of_rat" by blast |
|
1352 |
qed |
|
1353 |
qed |
|
1354 |
||
1355 |
lemma Rats_eq_int_div_nat: |
|
1356 |
"\<rat> = { real(i::int)/real(n::nat) |i n. n \<noteq> 0}" |
|
1357 |
proof(auto simp:Rats_eq_int_div_int) |
|
1358 |
fix i j::int assume "j \<noteq> 0" |
|
1359 |
show "EX (i'::int) (n::nat). real i/real j = real i'/real n \<and> 0<n" |
|
1360 |
proof cases |
|
1361 |
assume "j>0" |
|
1362 |
hence "real i/real j = real i/real(nat j) \<and> 0<nat j" |
|
1363 |
by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat) |
|
1364 |
thus ?thesis by blast |
|
1365 |
next |
|
1366 |
assume "~ j>0" |
|
1367 |
hence "real i/real j = real(-i)/real(nat(-j)) \<and> 0<nat(-j)" using `j\<noteq>0` |
|
1368 |
by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat) |
|
1369 |
thus ?thesis by blast |
|
1370 |
qed |
|
1371 |
next |
|
1372 |
fix i::int and n::nat assume "0 < n" |
|
1373 |
hence "real i/real n = real i/real(int n) \<and> int n \<noteq> 0" by simp |
|
1374 |
thus "\<exists>(i'::int) j::int. real i/real n = real i'/real j \<and> j \<noteq> 0" by blast |
|
1375 |
qed |
|
1376 |
||
1377 |
lemma Rats_abs_nat_div_natE: |
|
1378 |
assumes "x \<in> \<rat>" |
|
1379 |
obtains m n :: nat |
|
1380 |
where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "gcd m n = 1" |
|
1381 |
proof - |
|
1382 |
from `x \<in> \<rat>` obtain i::int and n::nat where "n \<noteq> 0" and "x = real i / real n" |
|
1383 |
by(auto simp add: Rats_eq_int_div_nat) |
|
1384 |
hence "\<bar>x\<bar> = real(nat(abs i)) / real n" by simp |
|
1385 |
then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast |
|
1386 |
let ?gcd = "gcd m n" |
|
1387 |
from `n\<noteq>0` have gcd: "?gcd \<noteq> 0" by simp |
|
1388 |
let ?k = "m div ?gcd" |
|
1389 |
let ?l = "n div ?gcd" |
|
1390 |
let ?gcd' = "gcd ?k ?l" |
|
1391 |
have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m" |
|
1392 |
by (rule dvd_mult_div_cancel) |
|
1393 |
have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n" |
|
1394 |
by (rule dvd_mult_div_cancel) |
|
1395 |
from `n\<noteq>0` and gcd_l have "?l \<noteq> 0" by (auto iff del: neq0_conv) |
|
1396 |
moreover |
|
1397 |
have "\<bar>x\<bar> = real ?k / real ?l" |
|
1398 |
proof - |
|
1399 |
from gcd have "real ?k / real ?l = |
|
1400 |
real (?gcd * ?k) / real (?gcd * ?l)" by simp |
|
1401 |
also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp |
|
1402 |
also from x_rat have "\<dots> = \<bar>x\<bar>" .. |
|
1403 |
finally show ?thesis .. |
|
1404 |
qed |
|
1405 |
moreover |
|
1406 |
have "?gcd' = 1" |
|
1407 |
proof - |
|
1408 |
have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)" |
|
1409 |
by (rule gcd_mult_distrib_nat) |
|
1410 |
with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp |
|
1411 |
with gcd show ?thesis by auto |
|
1412 |
qed |
|
1413 |
ultimately show ?thesis .. |
|
1414 |
qed |
|
1415 |
||
1416 |
subsection{*Density of the Rational Reals in the Reals*} |
|
1417 |
||
1418 |
text{* This density proof is due to Stefan Richter and was ported by TN. The |
|
1419 |
original source is \emph{Real Analysis} by H.L. Royden. |
|
1420 |
It employs the Archimedean property of the reals. *} |
|
1421 |
||
1422 |
lemma Rats_dense_in_real: |
|
1423 |
fixes x :: real |
|
1424 |
assumes "x < y" shows "\<exists>r\<in>\<rat>. x < r \<and> r < y" |
|
1425 |
proof - |
|
1426 |
from `x<y` have "0 < y-x" by simp |
|
1427 |
with reals_Archimedean obtain q::nat |
|
1428 |
where q: "inverse (real q) < y-x" and "0 < q" by auto |
|
1429 |
def p \<equiv> "ceiling (y * real q) - 1" |
|
1430 |
def r \<equiv> "of_int p / real q" |
|
1431 |
from q have "x < y - inverse (real q)" by simp |
|
1432 |
also have "y - inverse (real q) \<le> r" |
|
1433 |
unfolding r_def p_def |
|
1434 |
by (simp add: le_divide_eq left_diff_distrib le_of_int_ceiling `0 < q`) |
|
1435 |
finally have "x < r" . |
|
1436 |
moreover have "r < y" |
|
1437 |
unfolding r_def p_def |
|
1438 |
by (simp add: divide_less_eq diff_less_eq `0 < q` |
|
1439 |
less_ceiling_iff [symmetric]) |
|
1440 |
moreover from r_def have "r \<in> \<rat>" by simp |
|
1441 |
ultimately show ?thesis by fast |
|
1442 |
qed |
|
1443 |
||
1444 |
||
1445 |
||
1446 |
subsection{*Numerals and Arithmetic*} |
|
1447 |
||
1448 |
lemma [code_abbrev]: |
|
1449 |
"real_of_int (numeral k) = numeral k" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
1450 |
"real_of_int (- numeral k) = - numeral k" |
51523 | 1451 |
by simp_all |
1452 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
1453 |
text{*Collapse applications of @{const real} to @{const numeral}*} |
51523 | 1454 |
lemma real_numeral [simp]: |
1455 |
"real (numeral v :: int) = numeral v" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
1456 |
"real (- numeral v :: int) = - numeral v" |
51523 | 1457 |
by (simp_all add: real_of_int_def) |
1458 |
||
1459 |
lemma real_of_nat_numeral [simp]: |
|
1460 |
"real (numeral v :: nat) = numeral v" |
|
1461 |
by (simp add: real_of_nat_def) |
|
1462 |
||
1463 |
declaration {* |
|
1464 |
K (Lin_Arith.add_inj_thms [@{thm real_of_nat_le_iff} RS iffD2, @{thm real_of_nat_inject} RS iffD2] |
|
1465 |
(* not needed because x < (y::nat) can be rewritten as Suc x <= y: real_of_nat_less_iff RS iffD2 *) |
|
1466 |
#> Lin_Arith.add_inj_thms [@{thm real_of_int_le_iff} RS iffD2, @{thm real_of_int_inject} RS iffD2] |
|
1467 |
(* not needed because x < (y::int) can be rewritten as x + 1 <= y: real_of_int_less_iff RS iffD2 *) |
|
1468 |
#> Lin_Arith.add_simps [@{thm real_of_nat_zero}, @{thm real_of_nat_Suc}, @{thm real_of_nat_add}, |
|
1469 |
@{thm real_of_nat_mult}, @{thm real_of_int_zero}, @{thm real_of_one}, |
|
1470 |
@{thm real_of_int_add}, @{thm real_of_int_minus}, @{thm real_of_int_diff}, |
|
1471 |
@{thm real_of_int_mult}, @{thm real_of_int_of_nat_eq}, |
|
1472 |
@{thm real_of_nat_numeral}, @{thm real_numeral(1)}, @{thm real_numeral(2)}] |
|
1473 |
#> Lin_Arith.add_inj_const (@{const_name real}, @{typ "nat \<Rightarrow> real"}) |
|
1474 |
#> Lin_Arith.add_inj_const (@{const_name real}, @{typ "int \<Rightarrow> real"})) |
|
1475 |
*} |
|
1476 |
||
1477 |
||
1478 |
subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*} |
|
1479 |
||
1480 |
lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" |
|
1481 |
by arith |
|
1482 |
||
1483 |
text {* FIXME: redundant with @{text add_eq_0_iff} below *} |
|
1484 |
lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)" |
|
1485 |
by auto |
|
1486 |
||
1487 |
lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)" |
|
1488 |
by auto |
|
1489 |
||
1490 |
lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)" |
|
1491 |
by auto |
|
1492 |
||
1493 |
lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)" |
|
1494 |
by auto |
|
1495 |
||
1496 |
lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)" |
|
1497 |
by auto |
|
1498 |
||
1499 |
subsection {* Lemmas about powers *} |
|
1500 |
||
1501 |
text {* FIXME: declare this in Rings.thy or not at all *} |
|
1502 |
declare abs_mult_self [simp] |
|
1503 |
||
1504 |
(* used by Import/HOL/real.imp *) |
|
1505 |
lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n" |
|
1506 |
by simp |
|
1507 |
||
1508 |
lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n" |
|
1509 |
apply (induct "n") |
|
1510 |
apply (auto simp add: real_of_nat_Suc) |
|
1511 |
apply (subst mult_2) |
|
1512 |
apply (erule add_less_le_mono) |
|
1513 |
apply (rule two_realpow_ge_one) |
|
1514 |
done |
|
1515 |
||
1516 |
text {* TODO: no longer real-specific; rename and move elsewhere *} |
|
1517 |
lemma realpow_Suc_le_self: |
|
1518 |
fixes r :: "'a::linordered_semidom" |
|
1519 |
shows "[| 0 \<le> r; r \<le> 1 |] ==> r ^ Suc n \<le> r" |
|
1520 |
by (insert power_decreasing [of 1 "Suc n" r], simp) |
|
1521 |
||
1522 |
text {* TODO: no longer real-specific; rename and move elsewhere *} |
|
1523 |
lemma realpow_minus_mult: |
|
1524 |
fixes x :: "'a::monoid_mult" |
|
1525 |
shows "0 < n \<Longrightarrow> x ^ (n - 1) * x = x ^ n" |
|
1526 |
by (simp add: power_commutes split add: nat_diff_split) |
|
1527 |
||
1528 |
text {* FIXME: declare this [simp] for all types, or not at all *} |
|
1529 |
lemma real_two_squares_add_zero_iff [simp]: |
|
1530 |
"(x * x + y * y = 0) = ((x::real) = 0 \<and> y = 0)" |
|
1531 |
by (rule sum_squares_eq_zero_iff) |
|
1532 |
||
1533 |
text {* FIXME: declare this [simp] for all types, or not at all *} |
|
1534 |
lemma realpow_two_sum_zero_iff [simp]: |
|
53076 | 1535 |
"(x\<^sup>2 + y\<^sup>2 = (0::real)) = (x = 0 & y = 0)" |
51523 | 1536 |
by (rule sum_power2_eq_zero_iff) |
1537 |
||
1538 |
lemma real_minus_mult_self_le [simp]: "-(u * u) \<le> (x * (x::real))" |
|
1539 |
by (rule_tac y = 0 in order_trans, auto) |
|
1540 |
||
53076 | 1541 |
lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \<le> (x::real)\<^sup>2" |
51523 | 1542 |
by (auto simp add: power2_eq_square) |
1543 |
||
1544 |
||
1545 |
lemma numeral_power_le_real_of_nat_cancel_iff[simp]: |
|
1546 |
"(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::nat) ^ n \<le> a" |
|
1547 |
unfolding real_of_nat_le_iff[symmetric] by simp |
|
1548 |
||
1549 |
lemma real_of_nat_le_numeral_power_cancel_iff[simp]: |
|
1550 |
"real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::nat) ^ n" |
|
1551 |
unfolding real_of_nat_le_iff[symmetric] by simp |
|
1552 |
||
1553 |
lemma numeral_power_le_real_of_int_cancel_iff[simp]: |
|
1554 |
"(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::int) ^ n \<le> a" |
|
1555 |
unfolding real_of_int_le_iff[symmetric] by simp |
|
1556 |
||
1557 |
lemma real_of_int_le_numeral_power_cancel_iff[simp]: |
|
1558 |
"real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::int) ^ n" |
|
1559 |
unfolding real_of_int_le_iff[symmetric] by simp |
|
1560 |
||
1561 |
lemma neg_numeral_power_le_real_of_int_cancel_iff[simp]: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
1562 |
"(- numeral x::real) ^ n \<le> real a \<longleftrightarrow> (- numeral x::int) ^ n \<le> a" |
51523 | 1563 |
unfolding real_of_int_le_iff[symmetric] by simp |
1564 |
||
1565 |
lemma real_of_int_le_neg_numeral_power_cancel_iff[simp]: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
1566 |
"real a \<le> (- numeral x::real) ^ n \<longleftrightarrow> a \<le> (- numeral x::int) ^ n" |
51523 | 1567 |
unfolding real_of_int_le_iff[symmetric] by simp |
1568 |
||
1569 |
subsection{*Density of the Reals*} |
|
1570 |
||
1571 |
lemma real_lbound_gt_zero: |
|