| author | wenzelm |
| Mon, 10 Mar 2014 23:03:15 +0100 | |
| changeset 56043 | 0b25c3d34b77 |
| parent 56009 | dda076a32aea |
| child 56066 | cce36efe32eb |
| permissions | -rw-r--r-- |
| 33154 | 1 |
(* Title: HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy |
2 |
Author: Amine Chaieb |
|
3 |
*) |
|
4 |
||
| 35046 | 5 |
header {* Implementation and verification of multivariate polynomials *}
|
| 33154 | 6 |
|
7 |
theory Reflected_Multivariate_Polynomial |
|
|
54220
0e6645622f22
more convenient place for a theory in solitariness
haftmann
parents:
53374
diff
changeset
|
8 |
imports Complex_Main Rat_Pair Polynomial_List |
| 33154 | 9 |
begin |
10 |
||
| 52803 | 11 |
subsection{* Datatype of polynomial expressions *}
|
| 33154 | 12 |
|
| 56043 | 13 |
datatype poly = C Num | Bound nat | Add poly poly | Sub poly poly |
| 33154 | 14 |
| Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly |
15 |
||
| 35054 | 16 |
abbreviation poly_0 :: "poly" ("0\<^sub>p") where "0\<^sub>p \<equiv> C (0\<^sub>N)"
|
|
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
17 |
abbreviation poly_p :: "int \<Rightarrow> poly" ("'((_)')\<^sub>p") where "(i)\<^sub>p \<equiv> C (i)\<^sub>N"
|
| 33154 | 18 |
|
| 52658 | 19 |
|
| 33154 | 20 |
subsection{* Boundedness, substitution and all that *}
|
| 52658 | 21 |
|
22 |
primrec polysize:: "poly \<Rightarrow> nat" |
|
23 |
where |
|
| 33154 | 24 |
"polysize (C c) = 1" |
| 39246 | 25 |
| "polysize (Bound n) = 1" |
26 |
| "polysize (Neg p) = 1 + polysize p" |
|
27 |
| "polysize (Add p q) = 1 + polysize p + polysize q" |
|
28 |
| "polysize (Sub p q) = 1 + polysize p + polysize q" |
|
29 |
| "polysize (Mul p q) = 1 + polysize p + polysize q" |
|
30 |
| "polysize (Pw p n) = 1 + polysize p" |
|
31 |
| "polysize (CN c n p) = 4 + polysize c + polysize p" |
|
| 33154 | 32 |
|
| 52658 | 33 |
primrec polybound0:: "poly \<Rightarrow> bool" -- {* a poly is INDEPENDENT of Bound 0 *}
|
34 |
where |
|
| 56000 | 35 |
"polybound0 (C c) \<longleftrightarrow> True" |
36 |
| "polybound0 (Bound n) \<longleftrightarrow> n > 0" |
|
37 |
| "polybound0 (Neg a) \<longleftrightarrow> polybound0 a" |
|
38 |
| "polybound0 (Add a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" |
|
39 |
| "polybound0 (Sub a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" |
|
40 |
| "polybound0 (Mul a b) \<longleftrightarrow> polybound0 a \<and> polybound0 b" |
|
41 |
| "polybound0 (Pw p n) \<longleftrightarrow> polybound0 p" |
|
42 |
| "polybound0 (CN c n p) \<longleftrightarrow> n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p" |
|
| 39246 | 43 |
|
| 52658 | 44 |
primrec polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" -- {* substitute a poly into a poly for Bound 0 *}
|
45 |
where |
|
| 56000 | 46 |
"polysubst0 t (C c) = C c" |
47 |
| "polysubst0 t (Bound n) = (if n = 0 then t else Bound n)" |
|
| 39246 | 48 |
| "polysubst0 t (Neg a) = Neg (polysubst0 t a)" |
49 |
| "polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)" |
|
| 52803 | 50 |
| "polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)" |
| 39246 | 51 |
| "polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)" |
52 |
| "polysubst0 t (Pw p n) = Pw (polysubst0 t p) n" |
|
| 56000 | 53 |
| "polysubst0 t (CN c n p) = |
54 |
(if n = 0 then Add (polysubst0 t c) (Mul t (polysubst0 t p)) |
|
55 |
else CN (polysubst0 t c) n (polysubst0 t p))" |
|
| 33154 | 56 |
|
| 52803 | 57 |
fun decrpoly:: "poly \<Rightarrow> poly" |
| 41808 | 58 |
where |
| 33154 | 59 |
"decrpoly (Bound n) = Bound (n - 1)" |
| 41808 | 60 |
| "decrpoly (Neg a) = Neg (decrpoly a)" |
61 |
| "decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)" |
|
62 |
| "decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)" |
|
63 |
| "decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)" |
|
64 |
| "decrpoly (Pw p n) = Pw (decrpoly p) n" |
|
65 |
| "decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)" |
|
66 |
| "decrpoly a = a" |
|
| 33154 | 67 |
|
| 52658 | 68 |
|
| 33154 | 69 |
subsection{* Degrees and heads and coefficients *}
|
70 |
||
| 41808 | 71 |
fun degree:: "poly \<Rightarrow> nat" |
72 |
where |
|
| 33154 | 73 |
"degree (CN c 0 p) = 1 + degree p" |
| 41808 | 74 |
| "degree p = 0" |
| 33154 | 75 |
|
| 41808 | 76 |
fun head:: "poly \<Rightarrow> poly" |
77 |
where |
|
| 33154 | 78 |
"head (CN c 0 p) = head p" |
| 41808 | 79 |
| "head p = p" |
80 |
||
81 |
(* More general notions of degree and head *) |
|
82 |
fun degreen:: "poly \<Rightarrow> nat \<Rightarrow> nat" |
|
83 |
where |
|
| 56000 | 84 |
"degreen (CN c n p) = (\<lambda>m. if n = m then 1 + degreen p n else 0)" |
85 |
| "degreen p = (\<lambda>m. 0)" |
|
| 33154 | 86 |
|
| 41808 | 87 |
fun headn:: "poly \<Rightarrow> nat \<Rightarrow> poly" |
88 |
where |
|
89 |
"headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)" |
|
90 |
| "headn p = (\<lambda>m. p)" |
|
| 33154 | 91 |
|
| 41808 | 92 |
fun coefficients:: "poly \<Rightarrow> poly list" |
93 |
where |
|
| 56000 | 94 |
"coefficients (CN c 0 p) = c # coefficients p" |
| 41808 | 95 |
| "coefficients p = [p]" |
| 33154 | 96 |
|
| 41808 | 97 |
fun isconstant:: "poly \<Rightarrow> bool" |
98 |
where |
|
99 |
"isconstant (CN c 0 p) = False" |
|
100 |
| "isconstant p = True" |
|
| 33154 | 101 |
|
| 41808 | 102 |
fun behead:: "poly \<Rightarrow> poly" |
103 |
where |
|
104 |
"behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')" |
|
105 |
| "behead p = 0\<^sub>p" |
|
106 |
||
107 |
fun headconst:: "poly \<Rightarrow> Num" |
|
108 |
where |
|
| 33154 | 109 |
"headconst (CN c n p) = headconst p" |
| 41808 | 110 |
| "headconst (C n) = n" |
| 33154 | 111 |
|
| 52658 | 112 |
|
| 33154 | 113 |
subsection{* Operations for normalization *}
|
| 41812 | 114 |
|
115 |
declare if_cong[fundef_cong del] |
|
116 |
declare let_cong[fundef_cong del] |
|
117 |
||
118 |
fun polyadd :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60) |
|
119 |
where |
|
| 56000 | 120 |
"polyadd (C c) (C c') = C (c +\<^sub>N c')" |
| 52803 | 121 |
| "polyadd (C c) (CN c' n' p') = CN (polyadd (C c) c') n' p'" |
| 41812 | 122 |
| "polyadd (CN c n p) (C c') = CN (polyadd c (C c')) n p" |
123 |
| "polyadd (CN c n p) (CN c' n' p') = |
|
124 |
(if n < n' then CN (polyadd c (CN c' n' p')) n p |
|
| 56000 | 125 |
else if n' < n then CN (polyadd (CN c n p) c') n' p' |
126 |
else |
|
127 |
let |
|
128 |
cc' = polyadd c c'; |
|
129 |
pp' = polyadd p p' |
|
130 |
in if pp' = 0\<^sub>p then cc' else CN cc' n pp')" |
|
| 41812 | 131 |
| "polyadd a b = Add a b" |
132 |
||
| 33154 | 133 |
|
| 41808 | 134 |
fun polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
|
135 |
where |
|
| 33154 | 136 |
"polyneg (C c) = C (~\<^sub>N c)" |
| 41808 | 137 |
| "polyneg (CN c n p) = CN (polyneg c) n (polyneg p)" |
138 |
| "polyneg a = Neg a" |
|
| 33154 | 139 |
|
| 41814 | 140 |
definition polysub :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60) |
| 52658 | 141 |
where "p -\<^sub>p q = polyadd p (polyneg q)" |
| 41813 | 142 |
|
143 |
fun polymul :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60) |
|
144 |
where |
|
| 56043 | 145 |
"polymul (C c) (C c') = C (c *\<^sub>N c')" |
| 52803 | 146 |
| "polymul (C c) (CN c' n' p') = |
| 56000 | 147 |
(if c = 0\<^sub>N then 0\<^sub>p else CN (polymul (C c) c') n' (polymul (C c) p'))" |
| 52803 | 148 |
| "polymul (CN c n p) (C c') = |
| 56000 | 149 |
(if c' = 0\<^sub>N then 0\<^sub>p else CN (polymul c (C c')) n (polymul p (C c')))" |
| 52803 | 150 |
| "polymul (CN c n p) (CN c' n' p') = |
| 56000 | 151 |
(if n < n' then CN (polymul c (CN c' n' p')) n (polymul p (CN c' n' p')) |
152 |
else if n' < n then CN (polymul (CN c n p) c') n' (polymul (CN c n p) p') |
|
153 |
else polyadd (polymul (CN c n p) c') (CN 0\<^sub>p n' (polymul (CN c n p) p')))" |
|
| 41813 | 154 |
| "polymul a b = Mul a b" |
| 41808 | 155 |
|
| 41812 | 156 |
declare if_cong[fundef_cong] |
157 |
declare let_cong[fundef_cong] |
|
158 |
||
| 41808 | 159 |
fun polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly" |
160 |
where |
|
|
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
161 |
"polypow 0 = (\<lambda>p. (1)\<^sub>p)" |
| 56000 | 162 |
| "polypow n = |
163 |
(\<lambda>p. |
|
164 |
let |
|
165 |
q = polypow (n div 2) p; |
|
166 |
d = polymul q q |
|
167 |
in if even n then d else polymul p d)" |
|
| 33154 | 168 |
|
| 35054 | 169 |
abbreviation poly_pow :: "poly \<Rightarrow> nat \<Rightarrow> poly" (infixl "^\<^sub>p" 60) |
170 |
where "a ^\<^sub>p k \<equiv> polypow k a" |
|
| 33154 | 171 |
|
| 41808 | 172 |
function polynate :: "poly \<Rightarrow> poly" |
173 |
where |
|
|
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
174 |
"polynate (Bound n) = CN 0\<^sub>p n (1)\<^sub>p" |
| 56000 | 175 |
| "polynate (Add p q) = polynate p +\<^sub>p polynate q" |
176 |
| "polynate (Sub p q) = polynate p -\<^sub>p polynate q" |
|
177 |
| "polynate (Mul p q) = polynate p *\<^sub>p polynate q" |
|
178 |
| "polynate (Neg p) = ~\<^sub>p (polynate p)" |
|
179 |
| "polynate (Pw p n) = polynate p ^\<^sub>p n" |
|
| 41808 | 180 |
| "polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))" |
181 |
| "polynate (C c) = C (normNum c)" |
|
182 |
by pat_completeness auto |
|
183 |
termination by (relation "measure polysize") auto |
|
| 33154 | 184 |
|
| 52658 | 185 |
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly" |
186 |
where |
|
| 33154 | 187 |
"poly_cmul y (C x) = C (y *\<^sub>N x)" |
188 |
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)" |
|
189 |
| "poly_cmul y p = C y *\<^sub>p p" |
|
190 |
||
| 56009 | 191 |
definition monic :: "poly \<Rightarrow> poly \<times> bool" |
| 56000 | 192 |
where |
193 |
"monic p = |
|
194 |
(let h = headconst p |
|
195 |
in if h = 0\<^sub>N then (p, False) else (C (Ninv h) *\<^sub>p p, 0>\<^sub>N h))" |
|
| 33154 | 196 |
|
| 52658 | 197 |
|
| 56000 | 198 |
subsection {* Pseudo-division *}
|
| 33154 | 199 |
|
| 52658 | 200 |
definition shift1 :: "poly \<Rightarrow> poly" |
| 56000 | 201 |
where "shift1 p = CN 0\<^sub>p 0 p" |
| 33154 | 202 |
|
| 56009 | 203 |
abbreviation funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
|
| 52658 | 204 |
where "funpow \<equiv> compow" |
| 39246 | 205 |
|
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
206 |
partial_function (tailrec) polydivide_aux :: "poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> nat \<times> poly" |
| 52658 | 207 |
where |
| 52803 | 208 |
"polydivide_aux a n p k s = |
| 56000 | 209 |
(if s = 0\<^sub>p then (k, s) |
| 52803 | 210 |
else |
| 56000 | 211 |
let |
212 |
b = head s; |
|
213 |
m = degree s |
|
214 |
in |
|
215 |
if m < n then (k,s) |
|
216 |
else |
|
217 |
let p' = funpow (m - n) shift1 p |
|
218 |
in |
|
219 |
if a = b then polydivide_aux a n p k (s -\<^sub>p p') |
|
220 |
else polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))" |
|
| 33154 | 221 |
|
| 56000 | 222 |
definition polydivide :: "poly \<Rightarrow> poly \<Rightarrow> nat \<times> poly" |
223 |
where "polydivide s p = polydivide_aux (head p) (degree p) p 0 s" |
|
| 33154 | 224 |
|
| 52658 | 225 |
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" |
226 |
where |
|
| 33154 | 227 |
"poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)" |
228 |
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p" |
|
229 |
||
| 52658 | 230 |
fun poly_deriv :: "poly \<Rightarrow> poly" |
231 |
where |
|
| 33154 | 232 |
"poly_deriv (CN c 0 p) = poly_deriv_aux 1 p" |
233 |
| "poly_deriv p = 0\<^sub>p" |
|
234 |
||
| 52658 | 235 |
|
| 33154 | 236 |
subsection{* Semantics of the polynomial representation *}
|
237 |
||
| 56000 | 238 |
primrec Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{field_char_0,field_inverse_zero,power}"
|
239 |
where |
|
| 33154 | 240 |
"Ipoly bs (C c) = INum c" |
| 39246 | 241 |
| "Ipoly bs (Bound n) = bs!n" |
242 |
| "Ipoly bs (Neg a) = - Ipoly bs a" |
|
243 |
| "Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b" |
|
244 |
| "Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b" |
|
245 |
| "Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b" |
|
| 56000 | 246 |
| "Ipoly bs (Pw t n) = Ipoly bs t ^ n" |
247 |
| "Ipoly bs (CN c n p) = Ipoly bs c + (bs!n) * Ipoly bs p" |
|
| 39246 | 248 |
|
| 56000 | 249 |
abbreviation Ipoly_syntax :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{field_char_0,field_inverse_zero,power}"
|
250 |
("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
|
|
| 35054 | 251 |
where "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<equiv> Ipoly bs p" |
| 33154 | 252 |
|
| 56009 | 253 |
lemma Ipoly_CInt: "Ipoly bs (C (i, 1)) = of_int i" |
| 33154 | 254 |
by (simp add: INum_def) |
| 56000 | 255 |
|
| 52803 | 256 |
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j" |
| 33154 | 257 |
by (simp add: INum_def) |
258 |
||
259 |
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat |
|
260 |
||
| 52658 | 261 |
|
| 33154 | 262 |
subsection {* Normal form and normalization *}
|
263 |
||
| 41808 | 264 |
fun isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool" |
265 |
where |
|
| 33154 | 266 |
"isnpolyh (C c) = (\<lambda>k. isnormNum c)" |
| 56000 | 267 |
| "isnpolyh (CN c n p) = (\<lambda>k. n \<ge> k \<and> isnpolyh c (Suc n) \<and> isnpolyh p n \<and> p \<noteq> 0\<^sub>p)" |
| 41808 | 268 |
| "isnpolyh p = (\<lambda>k. False)" |
| 33154 | 269 |
|
| 56000 | 270 |
lemma isnpolyh_mono: "n' \<le> n \<Longrightarrow> isnpolyh p n \<Longrightarrow> isnpolyh p n'" |
| 52658 | 271 |
by (induct p rule: isnpolyh.induct) auto |
| 33154 | 272 |
|
| 52658 | 273 |
definition isnpoly :: "poly \<Rightarrow> bool" |
| 56000 | 274 |
where "isnpoly p = isnpolyh p 0" |
| 33154 | 275 |
|
276 |
text{* polyadd preserves normal forms *}
|
|
277 |
||
| 56000 | 278 |
lemma polyadd_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polyadd p q) (min n0 n1)" |
| 52803 | 279 |
proof (induct p q arbitrary: n0 n1 rule: polyadd.induct) |
| 41812 | 280 |
case (2 ab c' n' p' n0 n1) |
| 56009 | 281 |
from 2 have th1: "isnpolyh (C ab) (Suc n')" |
282 |
by simp |
|
283 |
from 2(3) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" |
|
284 |
by simp_all |
|
285 |
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" |
|
286 |
by simp |
|
287 |
with 2(1)[OF th1 th2] have th3:"isnpolyh (C ab +\<^sub>p c') (Suc n')" |
|
288 |
by simp |
|
289 |
from nplen1 have n01len1: "min n0 n1 \<le> n'" |
|
290 |
by simp |
|
291 |
then show ?case using 2 th3 |
|
292 |
by simp |
|
| 33154 | 293 |
next |
| 41812 | 294 |
case (3 c' n' p' ab n1 n0) |
| 56009 | 295 |
from 3 have th1: "isnpolyh (C ab) (Suc n')" |
296 |
by simp |
|
297 |
from 3(2) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" |
|
298 |
by simp_all |
|
299 |
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" |
|
300 |
by simp |
|
301 |
with 3(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C ab) (Suc n')" |
|
302 |
by simp |
|
303 |
from nplen1 have n01len1: "min n0 n1 \<le> n'" |
|
304 |
by simp |
|
305 |
then show ?case using 3 th3 |
|
306 |
by simp |
|
| 33154 | 307 |
next |
308 |
case (4 c n p c' n' p' n0 n1) |
|
| 56009 | 309 |
then have nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" |
310 |
by simp_all |
|
311 |
from 4 have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" |
|
312 |
by simp_all |
|
313 |
from 4 have ngen0: "n \<ge> n0" |
|
314 |
by simp |
|
315 |
from 4 have n'gen1: "n' \<ge> n1" |
|
316 |
by simp |
|
317 |
have "n < n' \<or> n' < n \<or> n = n'" |
|
318 |
by auto |
|
319 |
moreover |
|
320 |
{
|
|
| 52803 | 321 |
assume eq: "n = n'" |
322 |
with "4.hyps"(3)[OF nc nc'] |
|
| 56009 | 323 |
have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" |
324 |
by auto |
|
325 |
then have ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)" |
|
326 |
using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 |
|
327 |
by auto |
|
328 |
from eq "4.hyps"(4)[OF np np'] have npp': "isnpolyh (p +\<^sub>p p') n" |
|
329 |
by simp |
|
330 |
have minle: "min n0 n1 \<le> n'" |
|
331 |
using ngen0 n'gen1 eq by simp |
|
332 |
from minle npp' ncc'n01 4 eq ngen0 n'gen1 ncc' have ?case |
|
333 |
by (simp add: Let_def) |
|
334 |
} |
|
335 |
moreover |
|
336 |
{
|
|
| 52803 | 337 |
assume lt: "n < n'" |
| 56009 | 338 |
have "min n0 n1 \<le> n0" |
339 |
by simp |
|
340 |
with 4 lt have th1:"min n0 n1 \<le> n" |
|
341 |
by auto |
|
342 |
from 4 have th21: "isnpolyh c (Suc n)" |
|
343 |
by simp |
|
344 |
from 4 have th22: "isnpolyh (CN c' n' p') n'" |
|
345 |
by simp |
|
346 |
from lt have th23: "min (Suc n) n' = Suc n" |
|
347 |
by arith |
|
348 |
from "4.hyps"(1)[OF th21 th22] have "isnpolyh (polyadd c (CN c' n' p')) (Suc n)" |
|
349 |
using th23 by simp |
|
350 |
with 4 lt th1 have ?case |
|
351 |
by simp |
|
352 |
} |
|
353 |
moreover |
|
354 |
{
|
|
355 |
assume gt: "n' < n" |
|
356 |
then have gt': "n' < n \<and> \<not> n < n'" |
|
357 |
by simp |
|
358 |
have "min n0 n1 \<le> n1" |
|
359 |
by simp |
|
360 |
with 4 gt have th1: "min n0 n1 \<le> n'" |
|
361 |
by auto |
|
362 |
from 4 have th21: "isnpolyh c' (Suc n')" |
|
363 |
by simp_all |
|
364 |
from 4 have th22: "isnpolyh (CN c n p) n" |
|
365 |
by simp |
|
366 |
from gt have th23: "min n (Suc n') = Suc n'" |
|
367 |
by arith |
|
368 |
from "4.hyps"(2)[OF th22 th21] have "isnpolyh (polyadd (CN c n p) c') (Suc n')" |
|
369 |
using th23 by simp |
|
370 |
with 4 gt th1 have ?case |
|
371 |
by simp |
|
372 |
} |
|
| 52803 | 373 |
ultimately show ?case by blast |
| 33154 | 374 |
qed auto |
375 |
||
| 41812 | 376 |
lemma polyadd[simp]: "Ipoly bs (polyadd p q) = Ipoly bs p + Ipoly bs q" |
| 52658 | 377 |
by (induct p q rule: polyadd.induct) |
378 |
(auto simp add: Let_def field_simps distrib_left[symmetric] simp del: distrib_left) |
|
| 33154 | 379 |
|
| 56009 | 380 |
lemma polyadd_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polyadd p q)" |
| 33154 | 381 |
using polyadd_normh[of "p" "0" "q" "0"] isnpoly_def by simp |
382 |
||
| 41404 | 383 |
text{* The degree of addition and other general lemmas needed for the normal form of polymul *}
|
| 33154 | 384 |
|
| 52803 | 385 |
lemma polyadd_different_degreen: |
| 56009 | 386 |
assumes "isnpolyh p n0" |
387 |
and "isnpolyh q n1" |
|
388 |
and "degreen p m \<noteq> degreen q m" |
|
389 |
and "m \<le> min n0 n1" |
|
390 |
shows "degreen (polyadd p q) m = max (degreen p m) (degreen q m)" |
|
391 |
using assms |
|
| 33154 | 392 |
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct) |
393 |
case (4 c n p c' n' p' m n0 n1) |
|
| 41763 | 394 |
have "n' = n \<or> n < n' \<or> n' < n" by arith |
| 56009 | 395 |
then show ?case |
| 41763 | 396 |
proof (elim disjE) |
397 |
assume [simp]: "n' = n" |
|
| 41812 | 398 |
from 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7) |
| 41763 | 399 |
show ?thesis by (auto simp: Let_def) |
400 |
next |
|
401 |
assume "n < n'" |
|
402 |
with 4 show ?thesis by auto |
|
403 |
next |
|
404 |
assume "n' < n" |
|
405 |
with 4 show ?thesis by auto |
|
406 |
qed |
|
407 |
qed auto |
|
| 33154 | 408 |
|
| 56009 | 409 |
lemma headnz[simp]: "isnpolyh p n \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> headn p m \<noteq> 0\<^sub>p" |
| 52658 | 410 |
by (induct p arbitrary: n rule: headn.induct) auto |
| 56009 | 411 |
|
| 33154 | 412 |
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0" |
| 52658 | 413 |
by (induct p arbitrary: n rule: degree.induct) auto |
| 56009 | 414 |
|
| 33154 | 415 |
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0" |
| 52658 | 416 |
by (induct p arbitrary: n rule: degreen.induct) auto |
| 33154 | 417 |
|
418 |
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0" |
|
| 52658 | 419 |
by (induct p arbitrary: n rule: degree.induct) auto |
| 33154 | 420 |
|
421 |
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0" |
|
422 |
using degree_isnpolyh_Suc by auto |
|
| 56009 | 423 |
|
| 33154 | 424 |
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0" |
425 |
using degreen_0 by auto |
|
426 |
||
427 |
||
428 |
lemma degreen_polyadd: |
|
| 56009 | 429 |
assumes np: "isnpolyh p n0" |
430 |
and nq: "isnpolyh q n1" |
|
431 |
and m: "m \<le> max n0 n1" |
|
| 33154 | 432 |
shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)" |
433 |
using np nq m |
|
434 |
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct) |
|
| 52803 | 435 |
case (2 c c' n' p' n0 n1) |
| 56009 | 436 |
then show ?case |
437 |
by (cases n') simp_all |
|
| 33154 | 438 |
next |
| 52803 | 439 |
case (3 c n p c' n0 n1) |
| 56009 | 440 |
then show ?case |
441 |
by (cases n) auto |
|
| 33154 | 442 |
next |
| 52803 | 443 |
case (4 c n p c' n' p' n0 n1 m) |
| 41763 | 444 |
have "n' = n \<or> n < n' \<or> n' < n" by arith |
| 56009 | 445 |
then show ?case |
| 41763 | 446 |
proof (elim disjE) |
447 |
assume [simp]: "n' = n" |
|
| 41812 | 448 |
from 4(4)[of n n m] 4(3)[of "Suc n" "Suc n" m] 4(5-7) |
| 41763 | 449 |
show ?thesis by (auto simp: Let_def) |
450 |
qed simp_all |
|
| 33154 | 451 |
qed auto |
452 |
||
| 56009 | 453 |
lemma polyadd_eq_const_degreen: |
454 |
assumes "isnpolyh p n0" |
|
455 |
and "isnpolyh q n1" |
|
456 |
and "polyadd p q = C c" |
|
457 |
shows "degreen p m = degreen q m" |
|
458 |
using assms |
|
| 33154 | 459 |
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct) |
| 52803 | 460 |
case (4 c n p c' n' p' m n0 n1 x) |
| 56009 | 461 |
{
|
462 |
assume nn': "n' < n" |
|
463 |
then have ?case using 4 by simp |
|
464 |
} |
|
| 52803 | 465 |
moreover |
| 56009 | 466 |
{
|
467 |
assume nn': "\<not> n' < n" |
|
468 |
then have "n < n' \<or> n = n'" by arith |
|
| 52803 | 469 |
moreover { assume "n < n'" with 4 have ?case by simp }
|
| 56009 | 470 |
moreover |
471 |
{
|
|
472 |
assume eq: "n = n'" |
|
473 |
then have ?case using 4 |
|
| 41763 | 474 |
apply (cases "p +\<^sub>p p' = 0\<^sub>p") |
475 |
apply (auto simp add: Let_def) |
|
| 52658 | 476 |
apply blast |
477 |
done |
|
| 52803 | 478 |
} |
| 56009 | 479 |
ultimately have ?case by blast |
480 |
} |
|
| 33154 | 481 |
ultimately show ?case by blast |
482 |
qed simp_all |
|
483 |
||
484 |
lemma polymul_properties: |
|
| 56000 | 485 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 486 |
and np: "isnpolyh p n0" |
487 |
and nq: "isnpolyh q n1" |
|
488 |
and m: "m \<le> min n0 n1" |
|
| 52803 | 489 |
shows "isnpolyh (p *\<^sub>p q) (min n0 n1)" |
| 56009 | 490 |
and "p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p" |
491 |
and "degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)" |
|
| 33154 | 492 |
using np nq m |
| 52658 | 493 |
proof (induct p q arbitrary: n0 n1 m rule: polymul.induct) |
| 52803 | 494 |
case (2 c c' n' p') |
| 56009 | 495 |
{
|
496 |
case (1 n0 n1) |
|
497 |
with "2.hyps"(4-6)[of n' n' n'] and "2.hyps"(1-3)[of "Suc n'" "Suc n'" n'] |
|
| 41811 | 498 |
show ?case by (auto simp add: min_def) |
| 33154 | 499 |
next |
| 56009 | 500 |
case (2 n0 n1) |
501 |
then show ?case by auto |
|
| 33154 | 502 |
next |
| 56009 | 503 |
case (3 n0 n1) |
504 |
then show ?case using "2.hyps" by auto |
|
505 |
} |
|
| 33154 | 506 |
next |
| 41813 | 507 |
case (3 c n p c') |
| 56009 | 508 |
{
|
509 |
case (1 n0 n1) |
|
510 |
with "3.hyps"(4-6)[of n n n] and "3.hyps"(1-3)[of "Suc n" "Suc n" n] |
|
| 41811 | 511 |
show ?case by (auto simp add: min_def) |
| 33154 | 512 |
next |
| 56009 | 513 |
case (2 n0 n1) |
514 |
then show ?case by auto |
|
| 33154 | 515 |
next |
| 56009 | 516 |
case (3 n0 n1) |
517 |
then show ?case using "3.hyps" by auto |
|
518 |
} |
|
| 33154 | 519 |
next |
520 |
case (4 c n p c' n' p') |
|
521 |
let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'" |
|
| 56009 | 522 |
{
|
523 |
case (1 n0 n1) |
|
524 |
then have cnp: "isnpolyh ?cnp n" |
|
525 |
and cnp': "isnpolyh ?cnp' n'" |
|
526 |
and np: "isnpolyh p n" |
|
527 |
and nc: "isnpolyh c (Suc n)" |
|
528 |
and np': "isnpolyh p' n'" |
|
529 |
and nc': "isnpolyh c' (Suc n')" |
|
530 |
and nn0: "n \<ge> n0" |
|
531 |
and nn1: "n' \<ge> n1" |
|
532 |
by simp_all |
|
| 41811 | 533 |
{
|
| 56009 | 534 |
assume "n < n'" |
535 |
with "4.hyps"(4-5)[OF np cnp', of n] and "4.hyps"(1)[OF nc cnp', of n] nn0 cnp |
|
536 |
have ?case by (simp add: min_def) |
|
537 |
} moreover {
|
|
538 |
assume "n' < n" |
|
539 |
with "4.hyps"(16-17)[OF cnp np', of "n'"] and "4.hyps"(13)[OF cnp nc', of "Suc n'"] nn1 cnp' |
|
540 |
have ?case by (cases "Suc n' = n") (simp_all add: min_def) |
|
541 |
} moreover {
|
|
542 |
assume "n' = n" |
|
543 |
with "4.hyps"(16-17)[OF cnp np', of n] and "4.hyps"(13)[OF cnp nc', of n] cnp cnp' nn1 nn0 |
|
544 |
have ?case |
|
545 |
apply (auto intro!: polyadd_normh) |
|
546 |
apply (simp_all add: min_def isnpolyh_mono[OF nn0]) |
|
547 |
done |
|
548 |
} |
|
549 |
ultimately show ?case by arith |
|
550 |
next |
|
551 |
fix n0 n1 m |
|
552 |
assume np: "isnpolyh ?cnp n0" |
|
553 |
assume np':"isnpolyh ?cnp' n1" |
|
554 |
assume m: "m \<le> min n0 n1" |
|
555 |
let ?d = "degreen (?cnp *\<^sub>p ?cnp') m" |
|
556 |
let ?d1 = "degreen ?cnp m" |
|
557 |
let ?d2 = "degreen ?cnp' m" |
|
558 |
let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0 else ?d1 + ?d2)" |
|
| 56043 | 559 |
have "n' < n \<or> n < n' \<or> n' = n" by auto |
| 56009 | 560 |
moreover |
561 |
{
|
|
562 |
assume "n' < n \<or> n < n'" |
|
563 |
with "4.hyps"(3,6,18) np np' m have ?eq |
|
564 |
by auto |
|
565 |
} |
|
566 |
moreover |
|
567 |
{
|
|
568 |
assume nn': "n' = n" |
|
569 |
then have nn: "\<not> n' < n \<and> \<not> n < n'" by arith |
|
570 |
from "4.hyps"(16,18)[of n n' n] |
|
571 |
"4.hyps"(13,14)[of n "Suc n'" n] |
|
572 |
np np' nn' |
|
| 56043 | 573 |
have norm: |
574 |
"isnpolyh ?cnp n" |
|
575 |
"isnpolyh c' (Suc n)" |
|
576 |
"isnpolyh (?cnp *\<^sub>p c') n" |
|
577 |
"isnpolyh p' n" |
|
578 |
"isnpolyh (?cnp *\<^sub>p p') n" |
|
579 |
"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
580 |
"?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p" |
|
581 |
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" |
|
582 |
by (auto simp add: min_def) |
|
| 56009 | 583 |
{
|
584 |
assume mn: "m = n" |
|
585 |
from "4.hyps"(17,18)[OF norm(1,4), of n] |
|
586 |
"4.hyps"(13,15)[OF norm(1,2), of n] norm nn' mn |
|
587 |
have degs: |
|
588 |
"degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else ?d1 + degreen c' n)" |
|
589 |
"degreen (?cnp *\<^sub>p p') n = ?d1 + degreen p' n" |
|
590 |
by (simp_all add: min_def) |
|
591 |
from degs norm have th1: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" |
|
592 |
by simp |
|
593 |
then have neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" |
|
594 |
by simp |
|
595 |
have nmin: "n \<le> min n n" |
|
596 |
by (simp add: min_def) |
|
597 |
from polyadd_different_degreen[OF norm(3,6) neq nmin] th1 |
|
598 |
have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = |
|
599 |
degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
600 |
by simp |
|
601 |
from "4.hyps"(16-18)[OF norm(1,4), of n] |
|
602 |
"4.hyps"(13-15)[OF norm(1,2), of n] |
|
603 |
mn norm m nn' deg |
|
604 |
have ?eq by simp |
|
| 41811 | 605 |
} |
| 33154 | 606 |
moreover |
| 56009 | 607 |
{
|
608 |
assume mn: "m \<noteq> n" |
|
609 |
then have mn': "m < n" |
|
610 |
using m np by auto |
|
611 |
from nn' m np have max1: "m \<le> max n n" |
|
612 |
by simp |
|
613 |
then have min1: "m \<le> min n n" |
|
614 |
by simp |
|
615 |
then have min2: "m \<le> min n (Suc n)" |
|
616 |
by simp |
|
617 |
from "4.hyps"(16-18)[OF norm(1,4) min1] |
|
618 |
"4.hyps"(13-15)[OF norm(1,2) min2] |
|
619 |
degreen_polyadd[OF norm(3,6) max1] |
|
620 |
have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m \<le> |
|
621 |
max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)" |
|
622 |
using mn nn' np np' by simp |
|
623 |
with "4.hyps"(16-18)[OF norm(1,4) min1] |
|
624 |
"4.hyps"(13-15)[OF norm(1,2) min2] |
|
625 |
degreen_0[OF norm(3) mn'] |
|
626 |
have ?eq using nn' mn np np' by clarsimp |
|
627 |
} |
|
628 |
ultimately have ?eq by blast |
|
629 |
} |
|
630 |
ultimately show ?eq by blast |
|
631 |
} |
|
632 |
{
|
|
633 |
case (2 n0 n1) |
|
634 |
then have np: "isnpolyh ?cnp n0" |
|
635 |
and np': "isnpolyh ?cnp' n1" |
|
| 56043 | 636 |
and m: "m \<le> min n0 n1" |
637 |
by simp_all |
|
| 56009 | 638 |
then have mn: "m \<le> n" by simp |
639 |
let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')" |
|
640 |
{
|
|
641 |
assume C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n" |
|
642 |
then have nn: "\<not> n' < n \<and> \<not> n < n'" |
|
643 |
by simp |
|
644 |
from "4.hyps"(16-18) [of n n n] |
|
645 |
"4.hyps"(13-15)[of n "Suc n" n] |
|
646 |
np np' C(2) mn |
|
647 |
have norm: |
|
648 |
"isnpolyh ?cnp n" |
|
649 |
"isnpolyh c' (Suc n)" |
|
650 |
"isnpolyh (?cnp *\<^sub>p c') n" |
|
651 |
"isnpolyh p' n" |
|
652 |
"isnpolyh (?cnp *\<^sub>p p') n" |
|
653 |
"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
654 |
"?cnp *\<^sub>p c' = 0\<^sub>p \<longleftrightarrow> c' = 0\<^sub>p" |
|
655 |
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" |
|
656 |
"degreen (?cnp *\<^sub>p c') n = (if c' = 0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)" |
|
657 |
"degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n" |
|
658 |
by (simp_all add: min_def) |
|
659 |
from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" |
|
660 |
by simp |
|
661 |
have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" |
|
662 |
using norm by simp |
|
663 |
from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"] degneq |
|
664 |
have False by simp |
|
665 |
} |
|
666 |
then show ?case using "4.hyps" by clarsimp |
|
667 |
} |
|
| 33154 | 668 |
qed auto |
669 |
||
| 56009 | 670 |
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = Ipoly bs p * Ipoly bs q" |
| 52658 | 671 |
by (induct p q rule: polymul.induct) (auto simp add: field_simps) |
| 33154 | 672 |
|
| 52803 | 673 |
lemma polymul_normh: |
| 56000 | 674 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 56009 | 675 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)" |
| 52803 | 676 |
using polymul_properties(1) by blast |
| 52658 | 677 |
|
| 52803 | 678 |
lemma polymul_eq0_iff: |
| 56000 | 679 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 56009 | 680 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p *\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p \<or> q = 0\<^sub>p" |
| 52803 | 681 |
using polymul_properties(2) by blast |
| 52658 | 682 |
|
683 |
lemma polymul_degreen: (* FIXME duplicate? *) |
|
| 56000 | 684 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 56009 | 685 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> m \<le> min n0 n1 \<Longrightarrow> |
686 |
degreen (p *\<^sub>p q) m = (if p = 0\<^sub>p \<or> q = 0\<^sub>p then 0 else degreen p m + degreen q m)" |
|
| 33154 | 687 |
using polymul_properties(3) by blast |
| 52658 | 688 |
|
| 52803 | 689 |
lemma polymul_norm: |
| 56000 | 690 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 56009 | 691 |
shows "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polymul p q)" |
| 33154 | 692 |
using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp |
693 |
||
694 |
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p" |
|
| 52658 | 695 |
by (induct p arbitrary: n0 rule: headconst.induct) auto |
| 33154 | 696 |
|
697 |
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)" |
|
| 52658 | 698 |
by (induct p arbitrary: n0) auto |
| 33154 | 699 |
|
| 52658 | 700 |
lemma monic_eqI: |
| 52803 | 701 |
assumes np: "isnpolyh p n0" |
| 52658 | 702 |
shows "INum (headconst p) * Ipoly bs (fst (monic p)) = |
| 56000 | 703 |
(Ipoly bs p ::'a::{field_char_0,field_inverse_zero, power})"
|
| 33154 | 704 |
unfolding monic_def Let_def |
| 52658 | 705 |
proof (cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np]) |
| 33154 | 706 |
let ?h = "headconst p" |
707 |
assume pz: "p \<noteq> 0\<^sub>p" |
|
| 56000 | 708 |
{
|
709 |
assume hz: "INum ?h = (0::'a)" |
|
| 56043 | 710 |
from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" |
711 |
by simp_all |
|
712 |
from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" |
|
713 |
by simp |
|
714 |
with headconst_zero[OF np] have "p = 0\<^sub>p" |
|
715 |
by blast |
|
716 |
with pz have False |
|
717 |
by blast |
|
718 |
} |
|
719 |
then show "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" |
|
720 |
by blast |
|
| 33154 | 721 |
qed |
722 |
||
723 |
||
| 41404 | 724 |
text{* polyneg is a negation and preserves normal forms *}
|
| 33154 | 725 |
|
726 |
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p" |
|
| 52658 | 727 |
by (induct p rule: polyneg.induct) auto |
| 33154 | 728 |
|
| 56009 | 729 |
lemma polyneg0: "isnpolyh p n \<Longrightarrow> (~\<^sub>p p) = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
| 52658 | 730 |
by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: Nneg_def) |
| 56009 | 731 |
|
| 33154 | 732 |
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p" |
| 52658 | 733 |
by (induct p arbitrary: n0 rule: polyneg.induct) auto |
| 56009 | 734 |
|
735 |
lemma polyneg_normh: "isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n" |
|
736 |
by (induct p arbitrary: n rule: polyneg.induct) (auto simp add: polyneg0) |
|
| 33154 | 737 |
|
738 |
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)" |
|
739 |
using isnpoly_def polyneg_normh by simp |
|
740 |
||
741 |
||
| 41404 | 742 |
text{* polysub is a substraction and preserves normal forms *}
|
743 |
||
| 56009 | 744 |
lemma polysub[simp]: "Ipoly bs (polysub p q) = Ipoly bs p - Ipoly bs q" |
| 52658 | 745 |
by (simp add: polysub_def) |
| 56009 | 746 |
|
747 |
lemma polysub_normh: "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> isnpolyh (polysub p q) (min n0 n1)" |
|
| 52658 | 748 |
by (simp add: polysub_def polyneg_normh polyadd_normh) |
| 33154 | 749 |
|
| 56009 | 750 |
lemma polysub_norm: "isnpoly p \<Longrightarrow> isnpoly q \<Longrightarrow> isnpoly (polysub p q)" |
| 52803 | 751 |
using polyadd_norm polyneg_norm by (simp add: polysub_def) |
| 56009 | 752 |
|
| 52658 | 753 |
lemma polysub_same_0[simp]: |
| 56000 | 754 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 41814 | 755 |
shows "isnpolyh p n0 \<Longrightarrow> polysub p p = 0\<^sub>p" |
| 52658 | 756 |
unfolding polysub_def split_def fst_conv snd_conv |
757 |
by (induct p arbitrary: n0) (auto simp add: Let_def Nsub0[simplified Nsub_def]) |
|
| 33154 | 758 |
|
| 52803 | 759 |
lemma polysub_0: |
| 56000 | 760 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 56009 | 761 |
shows "isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> p -\<^sub>p q = 0\<^sub>p \<longleftrightarrow> p = q" |
| 33154 | 762 |
unfolding polysub_def split_def fst_conv snd_conv |
| 41763 | 763 |
by (induct p q arbitrary: n0 n1 rule:polyadd.induct) |
| 52658 | 764 |
(auto simp: Nsub0[simplified Nsub_def] Let_def) |
| 33154 | 765 |
|
766 |
text{* polypow is a power function and preserves normal forms *}
|
|
| 41404 | 767 |
|
| 56009 | 768 |
lemma polypow[simp]: |
769 |
"Ipoly bs (polypow n p) = (Ipoly bs p :: 'a::{field_char_0,field_inverse_zero}) ^ n"
|
|
| 52658 | 770 |
proof (induct n rule: polypow.induct) |
771 |
case 1 |
|
| 56043 | 772 |
then show ?case |
773 |
by simp |
|
| 33154 | 774 |
next |
775 |
case (2 n) |
|
776 |
let ?q = "polypow ((Suc n) div 2) p" |
|
| 41813 | 777 |
let ?d = "polymul ?q ?q" |
| 56043 | 778 |
have "odd (Suc n) \<or> even (Suc n)" |
779 |
by simp |
|
| 52803 | 780 |
moreover |
| 56043 | 781 |
{
|
782 |
assume odd: "odd (Suc n)" |
|
| 56000 | 783 |
have th: "(Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0)))) = Suc n div 2 + Suc n div 2 + 1" |
| 52658 | 784 |
by arith |
| 56043 | 785 |
from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul p ?d)" |
786 |
by (simp add: Let_def) |
|
787 |
also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2) * (Ipoly bs p)^(Suc n div 2)" |
|
| 33154 | 788 |
using "2.hyps" by simp |
789 |
also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)" |
|
| 52658 | 790 |
by (simp only: power_add power_one_right) simp |
| 56000 | 791 |
also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc 0) * (Suc n div Suc (Suc 0))))" |
| 33154 | 792 |
by (simp only: th) |
| 52803 | 793 |
finally have ?case |
| 56043 | 794 |
using odd_nat_div_two_times_two_plus_one[OF odd, symmetric] by simp |
795 |
} |
|
| 52803 | 796 |
moreover |
| 56043 | 797 |
{
|
798 |
assume even: "even (Suc n)" |
|
| 56000 | 799 |
have th: "(Suc (Suc 0)) * (Suc n div Suc (Suc 0)) = Suc n div 2 + Suc n div 2" |
| 52658 | 800 |
by arith |
| 56043 | 801 |
from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" |
802 |
by (simp add: Let_def) |
|
| 33154 | 803 |
also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2)" |
| 56043 | 804 |
using "2.hyps" by (simp only: power_add) simp |
805 |
finally have ?case using even_nat_div_two_times_two[OF even] |
|
806 |
by (simp only: th) |
|
807 |
} |
|
| 33154 | 808 |
ultimately show ?case by blast |
809 |
qed |
|
810 |
||
| 52803 | 811 |
lemma polypow_normh: |
| 56000 | 812 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 33154 | 813 |
shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n" |
814 |
proof (induct k arbitrary: n rule: polypow.induct) |
|
| 56043 | 815 |
case 1 |
816 |
then show ?case by auto |
|
817 |
next |
|
| 33154 | 818 |
case (2 k n) |
819 |
let ?q = "polypow (Suc k div 2) p" |
|
| 41813 | 820 |
let ?d = "polymul ?q ?q" |
| 56043 | 821 |
from 2 have th1: "isnpolyh ?q n" and th2: "isnpolyh p n" |
822 |
by blast+ |
|
823 |
from polymul_normh[OF th1 th1] have dn: "isnpolyh ?d n" |
|
824 |
by simp |
|
825 |
from polymul_normh[OF th2 dn] have on: "isnpolyh (polymul p ?d) n" |
|
826 |
by simp |
|
827 |
from dn on show ?case |
|
828 |
by (simp add: Let_def) |
|
829 |
qed |
|
| 33154 | 830 |
|
| 52803 | 831 |
lemma polypow_norm: |
| 56000 | 832 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 33154 | 833 |
shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)" |
834 |
by (simp add: polypow_normh isnpoly_def) |
|
835 |
||
| 41404 | 836 |
text{* Finally the whole normalization *}
|
| 33154 | 837 |
|
| 52658 | 838 |
lemma polynate [simp]: |
| 56000 | 839 |
"Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::{field_char_0,field_inverse_zero})"
|
| 52658 | 840 |
by (induct p rule:polynate.induct) auto |
| 33154 | 841 |
|
| 52803 | 842 |
lemma polynate_norm[simp]: |
| 56000 | 843 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 33154 | 844 |
shows "isnpoly (polynate p)" |
| 52658 | 845 |
by (induct p rule: polynate.induct) |
846 |
(simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm, |
|
847 |
simp_all add: isnpoly_def) |
|
| 33154 | 848 |
|
849 |
text{* shift1 *}
|
|
850 |
||
851 |
||
852 |
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)" |
|
| 52658 | 853 |
by (simp add: shift1_def) |
| 33154 | 854 |
|
| 52803 | 855 |
lemma shift1_isnpoly: |
| 52658 | 856 |
assumes pn: "isnpoly p" |
857 |
and pnz: "p \<noteq> 0\<^sub>p" |
|
858 |
shows "isnpoly (shift1 p) " |
|
859 |
using pn pnz by (simp add: shift1_def isnpoly_def) |
|
| 33154 | 860 |
|
861 |
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p" |
|
862 |
by (simp add: shift1_def) |
|
| 56043 | 863 |
|
864 |
lemma funpow_shift1_isnpoly: "isnpoly p \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpoly (funpow n shift1 p)" |
|
| 39246 | 865 |
by (induct n arbitrary: p) (auto simp add: shift1_isnpoly funpow_swap1) |
| 33154 | 866 |
|
| 52803 | 867 |
lemma funpow_isnpolyh: |
| 56043 | 868 |
assumes f: "\<And>p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n" |
| 52658 | 869 |
and np: "isnpolyh p n" |
| 33154 | 870 |
shows "isnpolyh (funpow k f p) n" |
| 52658 | 871 |
using f np by (induct k arbitrary: p) auto |
| 33154 | 872 |
|
| 52658 | 873 |
lemma funpow_shift1: |
| 56000 | 874 |
"(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0,field_inverse_zero}) =
|
| 52658 | 875 |
Ipoly bs (Mul (Pw (Bound 0) n) p)" |
876 |
by (induct n arbitrary: p) (simp_all add: shift1_isnpoly shift1) |
|
| 33154 | 877 |
|
| 56043 | 878 |
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p \<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0" |
| 33154 | 879 |
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def) |
880 |
||
| 52803 | 881 |
lemma funpow_shift1_1: |
| 56000 | 882 |
"(Ipoly bs (funpow n shift1 p) :: 'a :: {field_char_0,field_inverse_zero}) =
|
| 52658 | 883 |
Ipoly bs (funpow n shift1 (1)\<^sub>p *\<^sub>p p)" |
| 33154 | 884 |
by (simp add: funpow_shift1) |
885 |
||
886 |
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)" |
|
|
45129
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
wenzelm
parents:
41842
diff
changeset
|
887 |
by (induct p rule: poly_cmul.induct) (auto simp add: field_simps) |
| 33154 | 888 |
|
889 |
lemma behead: |
|
890 |
assumes np: "isnpolyh p n" |
|
| 52658 | 891 |
shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = |
| 56000 | 892 |
(Ipoly bs p :: 'a :: {field_char_0,field_inverse_zero})"
|
| 33154 | 893 |
using np |
894 |
proof (induct p arbitrary: n rule: behead.induct) |
|
| 56009 | 895 |
case (1 c p n) |
896 |
then have pn: "isnpolyh p n" by simp |
|
| 52803 | 897 |
from 1(1)[OF pn] |
898 |
have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" . |
|
| 52658 | 899 |
then show ?case using "1.hyps" |
900 |
apply (simp add: Let_def,cases "behead p = 0\<^sub>p") |
|
901 |
apply (simp_all add: th[symmetric] field_simps) |
|
902 |
done |
|
| 33154 | 903 |
qed (auto simp add: Let_def) |
904 |
||
905 |
lemma behead_isnpolyh: |
|
| 52658 | 906 |
assumes np: "isnpolyh p n" |
907 |
shows "isnpolyh (behead p) n" |
|
908 |
using np by (induct p rule: behead.induct) (auto simp add: Let_def isnpolyh_mono) |
|
909 |
||
| 33154 | 910 |
|
| 41404 | 911 |
subsection{* Miscellaneous lemmas about indexes, decrementation, substitution etc ... *}
|
| 52658 | 912 |
|
| 33154 | 913 |
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p" |
| 52658 | 914 |
proof (induct p arbitrary: n rule: poly.induct, auto) |
| 33154 | 915 |
case (goal1 c n p n') |
| 56009 | 916 |
then have "n = Suc (n - 1)" |
917 |
by simp |
|
918 |
then have "isnpolyh p (Suc (n - 1))" |
|
919 |
using `isnpolyh p n` by simp |
|
920 |
with goal1(2) show ?case |
|
921 |
by simp |
|
| 33154 | 922 |
qed |
923 |
||
924 |
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p" |
|
| 52658 | 925 |
by (induct p arbitrary: n0 rule: isconstant.induct) (auto simp add: isnpolyh_polybound0) |
| 33154 | 926 |
|
| 52658 | 927 |
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
928 |
by (induct p) auto |
|
| 33154 | 929 |
|
930 |
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)" |
|
| 52658 | 931 |
apply (induct p arbitrary: n0) |
932 |
apply auto |
|
| 56043 | 933 |
apply atomize |
| 33154 | 934 |
apply (erule_tac x = "Suc nat" in allE) |
935 |
apply auto |
|
936 |
done |
|
937 |
||
938 |
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)" |
|
| 52658 | 939 |
by (induct p arbitrary: n0 rule: head.induct) (auto intro: isnpolyh_polybound0) |
| 33154 | 940 |
|
941 |
lemma polybound0_I: |
|
942 |
assumes nb: "polybound0 a" |
|
| 56009 | 943 |
shows "Ipoly (b # bs) a = Ipoly (b' # bs) a" |
| 52658 | 944 |
using nb |
| 52803 | 945 |
by (induct a rule: poly.induct) auto |
| 52658 | 946 |
|
| 56009 | 947 |
lemma polysubst0_I: "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b # bs) a) # bs) t" |
| 33154 | 948 |
by (induct t) simp_all |
949 |
||
950 |
lemma polysubst0_I': |
|
951 |
assumes nb: "polybound0 a" |
|
| 56009 | 952 |
shows "Ipoly (b # bs) (polysubst0 a t) = Ipoly ((Ipoly (b' # bs) a) # bs) t" |
| 33154 | 953 |
by (induct t) (simp_all add: polybound0_I[OF nb, where b="b" and b'="b'"]) |
954 |
||
| 52658 | 955 |
lemma decrpoly: |
956 |
assumes nb: "polybound0 t" |
|
| 56043 | 957 |
shows "Ipoly (x # bs) t = Ipoly bs (decrpoly t)" |
| 52658 | 958 |
using nb by (induct t rule: decrpoly.induct) simp_all |
| 33154 | 959 |
|
| 52658 | 960 |
lemma polysubst0_polybound0: |
961 |
assumes nb: "polybound0 t" |
|
| 33154 | 962 |
shows "polybound0 (polysubst0 t a)" |
| 52658 | 963 |
using nb by (induct a rule: poly.induct) auto |
| 33154 | 964 |
|
965 |
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p" |
|
| 52658 | 966 |
by (induct p arbitrary: n rule: degree.induct) (auto simp add: isnpolyh_polybound0) |
| 33154 | 967 |
|
| 56043 | 968 |
primrec maxindex :: "poly \<Rightarrow> nat" |
969 |
where |
|
| 33154 | 970 |
"maxindex (Bound n) = n + 1" |
971 |
| "maxindex (CN c n p) = max (n + 1) (max (maxindex c) (maxindex p))" |
|
972 |
| "maxindex (Add p q) = max (maxindex p) (maxindex q)" |
|
973 |
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)" |
|
974 |
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)" |
|
975 |
| "maxindex (Neg p) = maxindex p" |
|
976 |
| "maxindex (Pw p n) = maxindex p" |
|
977 |
| "maxindex (C x) = 0" |
|
978 |
||
| 52658 | 979 |
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool" |
| 56000 | 980 |
where "wf_bs bs p \<longleftrightarrow> length bs \<ge> maxindex p" |
| 33154 | 981 |
|
| 56043 | 982 |
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall>c \<in> set (coefficients p). wf_bs bs c" |
| 52658 | 983 |
proof (induct p rule: coefficients.induct) |
| 52803 | 984 |
case (1 c p) |
985 |
show ?case |
|
| 33154 | 986 |
proof |
| 56009 | 987 |
fix x |
988 |
assume xc: "x \<in> set (coefficients (CN c 0 p))" |
|
989 |
then have "x = c \<or> x \<in> set (coefficients p)" |
|
990 |
by simp |
|
| 52803 | 991 |
moreover |
| 56009 | 992 |
{
|
993 |
assume "x = c" |
|
994 |
then have "wf_bs bs x" |
|
| 56043 | 995 |
using "1.prems" unfolding wf_bs_def by simp |
| 56009 | 996 |
} |
997 |
moreover |
|
998 |
{
|
|
999 |
assume H: "x \<in> set (coefficients p)" |
|
1000 |
from "1.prems" have "wf_bs bs p" |
|
1001 |
unfolding wf_bs_def by simp |
|
1002 |
with "1.hyps" H have "wf_bs bs x" |
|
1003 |
by blast |
|
1004 |
} |
|
1005 |
ultimately show "wf_bs bs x" |
|
1006 |
by blast |
|
| 33154 | 1007 |
qed |
1008 |
qed simp_all |
|
1009 |
||
| 56043 | 1010 |
lemma maxindex_coefficients: "\<forall>c \<in> set (coefficients p). maxindex c \<le> maxindex p" |
| 52658 | 1011 |
by (induct p rule: coefficients.induct) auto |
| 33154 | 1012 |
|
| 56000 | 1013 |
lemma wf_bs_I: "wf_bs bs p \<Longrightarrow> Ipoly (bs @ bs') p = Ipoly bs p" |
| 52658 | 1014 |
unfolding wf_bs_def by (induct p) (auto simp add: nth_append) |
| 33154 | 1015 |
|
| 52658 | 1016 |
lemma take_maxindex_wf: |
| 52803 | 1017 |
assumes wf: "wf_bs bs p" |
| 33154 | 1018 |
shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p" |
| 56009 | 1019 |
proof - |
| 33154 | 1020 |
let ?ip = "maxindex p" |
1021 |
let ?tbs = "take ?ip bs" |
|
| 56009 | 1022 |
from wf have "length ?tbs = ?ip" |
1023 |
unfolding wf_bs_def by simp |
|
1024 |
then have wf': "wf_bs ?tbs p" |
|
1025 |
unfolding wf_bs_def by simp |
|
| 56043 | 1026 |
have eq: "bs = ?tbs @ drop ?ip bs" |
| 56009 | 1027 |
by simp |
1028 |
from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis |
|
1029 |
using eq by simp |
|
| 33154 | 1030 |
qed |
1031 |
||
1032 |
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1" |
|
| 52658 | 1033 |
by (induct p) auto |
| 33154 | 1034 |
|
1035 |
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p" |
|
1036 |
unfolding wf_bs_def by simp |
|
1037 |
||
1038 |
lemma wf_bs_insensitive': "wf_bs (x#bs) p = wf_bs (y#bs) p" |
|
1039 |
unfolding wf_bs_def by simp |
|
1040 |
||
1041 |
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x#bs) p" |
|
| 52658 | 1042 |
by (induct p rule: coefficients.induct) (auto simp add: wf_bs_def) |
| 56043 | 1043 |
|
| 33154 | 1044 |
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []" |
| 52658 | 1045 |
by (induct p rule: coefficients.induct) simp_all |
| 33154 | 1046 |
|
1047 |
lemma coefficients_head: "last (coefficients p) = head p" |
|
| 52658 | 1048 |
by (induct p rule: coefficients.induct) auto |
| 33154 | 1049 |
|
1050 |
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x#bs) p" |
|
| 52658 | 1051 |
unfolding wf_bs_def by (induct p rule: decrpoly.induct) auto |
| 33154 | 1052 |
|
| 56043 | 1053 |
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists>ys. length (xs @ ys) = n" |
| 33154 | 1054 |
apply (rule exI[where x="replicate (n - length xs) z"]) |
| 52658 | 1055 |
apply simp |
1056 |
done |
|
1057 |
||
| 56043 | 1058 |
lemma isnpolyh_Suc_const: "isnpolyh p (Suc n) \<Longrightarrow> isconstant p" |
| 52658 | 1059 |
apply (cases p) |
1060 |
apply auto |
|
1061 |
apply (case_tac "nat") |
|
1062 |
apply simp_all |
|
1063 |
done |
|
| 33154 | 1064 |
|
1065 |
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)" |
|
| 52803 | 1066 |
unfolding wf_bs_def |
| 33154 | 1067 |
apply (induct p q rule: polyadd.induct) |
1068 |
apply (auto simp add: Let_def) |
|
1069 |
done |
|
1070 |
||
1071 |
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)" |
|
| 52803 | 1072 |
unfolding wf_bs_def |
1073 |
apply (induct p q arbitrary: bs rule: polymul.induct) |
|
| 33154 | 1074 |
apply (simp_all add: wf_bs_polyadd) |
1075 |
apply clarsimp |
|
1076 |
apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format]) |
|
1077 |
apply auto |
|
1078 |
done |
|
1079 |
||
1080 |
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)" |
|
| 52658 | 1081 |
unfolding wf_bs_def by (induct p rule: polyneg.induct) auto |
| 33154 | 1082 |
|
1083 |
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)" |
|
| 56043 | 1084 |
unfolding polysub_def split_def fst_conv snd_conv |
1085 |
using wf_bs_polyadd wf_bs_polyneg by blast |
|
| 33154 | 1086 |
|
| 52658 | 1087 |
|
| 56043 | 1088 |
subsection {* Canonicity of polynomial representation, see lemma isnpolyh_unique *}
|
| 33154 | 1089 |
|
1090 |
definition "polypoly bs p = map (Ipoly bs) (coefficients p)" |
|
| 56043 | 1091 |
definition "polypoly' bs p = map (Ipoly bs \<circ> decrpoly) (coefficients p)" |
1092 |
definition "poly_nate bs p = map (Ipoly bs \<circ> decrpoly) (coefficients (polynate p))" |
|
| 33154 | 1093 |
|
| 56043 | 1094 |
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall>q \<in> set (coefficients p). isnpolyh q n0" |
| 33154 | 1095 |
proof (induct p arbitrary: n0 rule: coefficients.induct) |
1096 |
case (1 c p n0) |
|
| 56009 | 1097 |
have cp: "isnpolyh (CN c 0 p) n0" |
1098 |
by fact |
|
1099 |
then have norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0" |
|
| 33154 | 1100 |
by (auto simp add: isnpolyh_mono[where n'=0]) |
| 56009 | 1101 |
from "1.hyps"[OF norm(2)] norm(1) norm(4) show ?case |
1102 |
by simp |
|
| 33154 | 1103 |
qed auto |
1104 |
||
| 56043 | 1105 |
lemma coefficients_isconst: "isnpolyh p n \<Longrightarrow> \<forall>q \<in> set (coefficients p). isconstant q" |
1106 |
by (induct p arbitrary: n rule: coefficients.induct) (auto simp add: isnpolyh_Suc_const) |
|
| 33154 | 1107 |
|
1108 |
lemma polypoly_polypoly': |
|
1109 |
assumes np: "isnpolyh p n0" |
|
| 56043 | 1110 |
shows "polypoly (x # bs) p = polypoly' bs p" |
1111 |
proof - |
|
| 33154 | 1112 |
let ?cf = "set (coefficients p)" |
1113 |
from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" . |
|
| 56043 | 1114 |
{
|
1115 |
fix q |
|
1116 |
assume q: "q \<in> ?cf" |
|
1117 |
from q cn_norm have th: "isnpolyh q n0" |
|
1118 |
by blast |
|
1119 |
from coefficients_isconst[OF np] q have "isconstant q" |
|
1120 |
by blast |
|
1121 |
with isconstant_polybound0[OF th] have "polybound0 q" |
|
1122 |
by blast |
|
1123 |
} |
|
| 56009 | 1124 |
then have "\<forall>q \<in> ?cf. polybound0 q" .. |
| 56043 | 1125 |
then have "\<forall>q \<in> ?cf. Ipoly (x # bs) q = Ipoly bs (decrpoly q)" |
| 33154 | 1126 |
using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs] |
1127 |
by auto |
|
| 56043 | 1128 |
then show ?thesis |
1129 |
unfolding polypoly_def polypoly'_def by simp |
|
| 33154 | 1130 |
qed |
1131 |
||
1132 |
lemma polypoly_poly: |
|
| 56043 | 1133 |
assumes "isnpolyh p n0" |
1134 |
shows "Ipoly (x # bs) p = poly (polypoly (x # bs) p) x" |
|
1135 |
using assms |
|
| 52658 | 1136 |
by (induct p arbitrary: n0 bs rule: coefficients.induct) (auto simp add: polypoly_def) |
| 33154 | 1137 |
|
| 52803 | 1138 |
lemma polypoly'_poly: |
| 56043 | 1139 |
assumes "isnpolyh p n0" |
| 52658 | 1140 |
shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x" |
| 56043 | 1141 |
using polypoly_poly[OF assms, simplified polypoly_polypoly'[OF assms]] . |
| 33154 | 1142 |
|
1143 |
||
1144 |
lemma polypoly_poly_polybound0: |
|
| 56043 | 1145 |
assumes "isnpolyh p n0" |
1146 |
and "polybound0 p" |
|
| 33154 | 1147 |
shows "polypoly bs p = [Ipoly bs p]" |
| 56043 | 1148 |
using assms |
1149 |
unfolding polypoly_def |
|
| 52658 | 1150 |
apply (cases p) |
1151 |
apply auto |
|
1152 |
apply (case_tac nat) |
|
1153 |
apply auto |
|
1154 |
done |
|
| 33154 | 1155 |
|
| 52803 | 1156 |
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0" |
| 52658 | 1157 |
by (induct p rule: head.induct) auto |
| 33154 | 1158 |
|
| 56043 | 1159 |
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> headn p m = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
| 52658 | 1160 |
by (cases p) auto |
| 33154 | 1161 |
|
1162 |
lemma head_eq_headn0: "head p = headn p 0" |
|
| 52658 | 1163 |
by (induct p rule: head.induct) simp_all |
| 33154 | 1164 |
|
| 56043 | 1165 |
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> head p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
| 33154 | 1166 |
by (simp add: head_eq_headn0) |
1167 |
||
| 52803 | 1168 |
lemma isnpolyh_zero_iff: |
| 52658 | 1169 |
assumes nq: "isnpolyh p n0" |
| 56000 | 1170 |
and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{field_char_0,field_inverse_zero, power})"
|
| 33154 | 1171 |
shows "p = 0\<^sub>p" |
| 52658 | 1172 |
using nq eq |
| 34915 | 1173 |
proof (induct "maxindex p" arbitrary: p n0 rule: less_induct) |
1174 |
case less |
|
1175 |
note np = `isnpolyh p n0` and zp = `\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)` |
|
| 56000 | 1176 |
{
|
1177 |
assume nz: "maxindex p = 0" |
|
1178 |
then obtain c where "p = C c" |
|
1179 |
using np by (cases p) auto |
|
1180 |
with zp np have "p = 0\<^sub>p" |
|
1181 |
unfolding wf_bs_def by simp |
|
1182 |
} |
|
| 33154 | 1183 |
moreover |
| 56000 | 1184 |
{
|
1185 |
assume nz: "maxindex p \<noteq> 0" |
|
| 33154 | 1186 |
let ?h = "head p" |
1187 |
let ?hd = "decrpoly ?h" |
|
1188 |
let ?ihd = "maxindex ?hd" |
|
| 56000 | 1189 |
from head_isnpolyh[OF np] head_polybound0[OF np] |
1190 |
have h: "isnpolyh ?h n0" "polybound0 ?h" |
|
| 33154 | 1191 |
by simp_all |
| 56000 | 1192 |
then have nhd: "isnpolyh ?hd (n0 - 1)" |
1193 |
using decrpoly_normh by blast |
|
| 52803 | 1194 |
|
| 33154 | 1195 |
from maxindex_coefficients[of p] coefficients_head[of p, symmetric] |
| 56000 | 1196 |
have mihn: "maxindex ?h \<le> maxindex p" |
1197 |
by auto |
|
1198 |
with decr_maxindex[OF h(2)] nz have ihd_lt_n: "?ihd < maxindex p" |
|
1199 |
by auto |
|
1200 |
{
|
|
1201 |
fix bs :: "'a list" |
|
1202 |
assume bs: "wf_bs bs ?hd" |
|
| 33154 | 1203 |
let ?ts = "take ?ihd bs" |
1204 |
let ?rs = "drop ?ihd bs" |
|
| 56000 | 1205 |
have ts: "wf_bs ?ts ?hd" |
1206 |
using bs unfolding wf_bs_def by simp |
|
1207 |
have bs_ts_eq: "?ts @ ?rs = bs" |
|
1208 |
by simp |
|
1209 |
from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x # ?ts) ?h" |
|
1210 |
by simp |
|
1211 |
from ihd_lt_n have "\<forall>x. length (x # ?ts) \<le> maxindex p" |
|
1212 |
by simp |
|
1213 |
with length_le_list_ex obtain xs where xs: "length ((x # ?ts) @ xs) = maxindex p" |
|
1214 |
by blast |
|
1215 |
then have "\<forall>x. wf_bs ((x # ?ts) @ xs) p" |
|
1216 |
unfolding wf_bs_def by simp |
|
1217 |
with zp have "\<forall>x. Ipoly ((x # ?ts) @ xs) p = 0" |
|
1218 |
by blast |
|
1219 |
then have "\<forall>x. Ipoly (x # (?ts @ xs)) p = 0" |
|
1220 |
by simp |
|
| 33154 | 1221 |
with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a] |
| 56000 | 1222 |
have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x" |
1223 |
by simp |
|
1224 |
then have "poly (polypoly' (?ts @ xs) p) = poly []" |
|
1225 |
by auto |
|
1226 |
then have "\<forall>c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0" |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1227 |
using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff) |
| 33154 | 1228 |
with coefficients_head[of p, symmetric] |
| 56000 | 1229 |
have th0: "Ipoly (?ts @ xs) ?hd = 0" |
1230 |
by simp |
|
1231 |
from bs have wf'': "wf_bs ?ts ?hd" |
|
1232 |
unfolding wf_bs_def by simp |
|
1233 |
with th0 wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" |
|
1234 |
by simp |
|
1235 |
with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" |
|
1236 |
by simp |
|
1237 |
} |
|
1238 |
then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" |
|
1239 |
by blast |
|
1240 |
from less(1)[OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" |
|
1241 |
by blast |
|
1242 |
then have "?h = 0\<^sub>p" by simp |
|
1243 |
with head_nz[OF np] have "p = 0\<^sub>p" by simp |
|
1244 |
} |
|
1245 |
ultimately show "p = 0\<^sub>p" |
|
1246 |
by blast |
|
| 33154 | 1247 |
qed |
1248 |
||
| 52803 | 1249 |
lemma isnpolyh_unique: |
| 56000 | 1250 |
assumes np: "isnpolyh p n0" |
| 52658 | 1251 |
and nq: "isnpolyh q n1" |
| 56000 | 1252 |
shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{field_char_0,field_inverse_zero,power})) \<longleftrightarrow> p = q"
|
1253 |
proof auto |
|
1254 |
assume H: "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a) = \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>" |
|
1255 |
then have "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" |
|
1256 |
by simp |
|
1257 |
then have "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" |
|
| 33154 | 1258 |
using wf_bs_polysub[where p=p and q=q] by auto |
| 56000 | 1259 |
with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq] show "p = q" |
1260 |
by blast |
|
| 33154 | 1261 |
qed |
1262 |
||
1263 |
||
| 41404 | 1264 |
text{* consequences of unicity on the algorithms for polynomial normalization *}
|
| 33154 | 1265 |
|
| 52658 | 1266 |
lemma polyadd_commute: |
| 56000 | 1267 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 1268 |
and np: "isnpolyh p n0" |
1269 |
and nq: "isnpolyh q n1" |
|
1270 |
shows "p +\<^sub>p q = q +\<^sub>p p" |
|
| 56000 | 1271 |
using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] |
1272 |
by simp |
|
| 33154 | 1273 |
|
| 56000 | 1274 |
lemma zero_normh: "isnpolyh 0\<^sub>p n" |
1275 |
by simp |
|
1276 |
||
1277 |
lemma one_normh: "isnpolyh (1)\<^sub>p n" |
|
1278 |
by simp |
|
| 52658 | 1279 |
|
| 52803 | 1280 |
lemma polyadd_0[simp]: |
| 56000 | 1281 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 1282 |
and np: "isnpolyh p n0" |
| 56000 | 1283 |
shows "p +\<^sub>p 0\<^sub>p = p" |
1284 |
and "0\<^sub>p +\<^sub>p p = p" |
|
| 52803 | 1285 |
using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np] |
| 33154 | 1286 |
isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all |
1287 |
||
| 52803 | 1288 |
lemma polymul_1[simp]: |
| 56000 | 1289 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 1290 |
and np: "isnpolyh p n0" |
| 56000 | 1291 |
shows "p *\<^sub>p (1)\<^sub>p = p" |
1292 |
and "(1)\<^sub>p *\<^sub>p p = p" |
|
| 52803 | 1293 |
using isnpolyh_unique[OF polymul_normh[OF np one_normh] np] |
| 33154 | 1294 |
isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all |
| 52658 | 1295 |
|
| 52803 | 1296 |
lemma polymul_0[simp]: |
| 56000 | 1297 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 1298 |
and np: "isnpolyh p n0" |
| 56000 | 1299 |
shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" |
1300 |
and "0\<^sub>p *\<^sub>p p = 0\<^sub>p" |
|
| 52803 | 1301 |
using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh] |
| 33154 | 1302 |
isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all |
1303 |
||
| 52803 | 1304 |
lemma polymul_commute: |
| 56000 | 1305 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
1306 |
and np: "isnpolyh p n0" |
|
| 52658 | 1307 |
and nq: "isnpolyh q n1" |
| 33154 | 1308 |
shows "p *\<^sub>p q = q *\<^sub>p p" |
| 56043 | 1309 |
using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], |
1310 |
where ?'a = "'a::{field_char_0,field_inverse_zero, power}"]
|
|
| 52658 | 1311 |
by simp |
| 33154 | 1312 |
|
| 52658 | 1313 |
declare polyneg_polyneg [simp] |
| 52803 | 1314 |
|
1315 |
lemma isnpolyh_polynate_id [simp]: |
|
| 56000 | 1316 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
1317 |
and np: "isnpolyh p n0" |
|
| 52658 | 1318 |
shows "polynate p = p" |
| 56043 | 1319 |
using isnpolyh_unique[where ?'a= "'a::{field_char_0,field_inverse_zero}",
|
1320 |
OF polynate_norm[of p, unfolded isnpoly_def] np] |
|
1321 |
polynate[where ?'a = "'a::{field_char_0,field_inverse_zero}"]
|
|
| 52658 | 1322 |
by simp |
| 33154 | 1323 |
|
| 52803 | 1324 |
lemma polynate_idempotent[simp]: |
| 56000 | 1325 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 33154 | 1326 |
shows "polynate (polynate p) = polynate p" |
1327 |
using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] . |
|
1328 |
||
1329 |
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)" |
|
1330 |
unfolding poly_nate_def polypoly'_def .. |
|
| 52658 | 1331 |
|
1332 |
lemma poly_nate_poly: |
|
| 56000 | 1333 |
"poly (poly_nate bs p) = (\<lambda>x:: 'a ::{field_char_0,field_inverse_zero}. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
|
| 33154 | 1334 |
using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p] |
| 52658 | 1335 |
unfolding poly_nate_polypoly' by auto |
1336 |
||
| 33154 | 1337 |
|
1338 |
subsection{* heads, degrees and all that *}
|
|
| 52658 | 1339 |
|
| 33154 | 1340 |
lemma degree_eq_degreen0: "degree p = degreen p 0" |
| 52658 | 1341 |
by (induct p rule: degree.induct) simp_all |
| 33154 | 1342 |
|
| 52658 | 1343 |
lemma degree_polyneg: |
| 56043 | 1344 |
assumes "isnpolyh p n" |
| 33154 | 1345 |
shows "degree (polyneg p) = degree p" |
| 56043 | 1346 |
apply (induct p rule: polyneg.induct) |
1347 |
using assms |
|
1348 |
apply simp_all |
|
| 52658 | 1349 |
apply (case_tac na) |
1350 |
apply auto |
|
1351 |
done |
|
| 33154 | 1352 |
|
1353 |
lemma degree_polyadd: |
|
| 56043 | 1354 |
assumes np: "isnpolyh p n0" |
1355 |
and nq: "isnpolyh q n1" |
|
| 33154 | 1356 |
shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)" |
| 52658 | 1357 |
using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp |
| 33154 | 1358 |
|
1359 |
||
| 52658 | 1360 |
lemma degree_polysub: |
1361 |
assumes np: "isnpolyh p n0" |
|
1362 |
and nq: "isnpolyh q n1" |
|
| 33154 | 1363 |
shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)" |
1364 |
proof- |
|
| 56043 | 1365 |
from nq have nq': "isnpolyh (~\<^sub>p q) n1" |
1366 |
using polyneg_normh by simp |
|
1367 |
from degree_polyadd[OF np nq'] show ?thesis |
|
1368 |
by (simp add: polysub_def degree_polyneg[OF nq]) |
|
| 33154 | 1369 |
qed |
1370 |
||
| 52803 | 1371 |
lemma degree_polysub_samehead: |
| 56000 | 1372 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 56043 | 1373 |
and np: "isnpolyh p n0" |
1374 |
and nq: "isnpolyh q n1" |
|
1375 |
and h: "head p = head q" |
|
| 52658 | 1376 |
and d: "degree p = degree q" |
| 33154 | 1377 |
shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)" |
| 52658 | 1378 |
unfolding polysub_def split_def fst_conv snd_conv |
1379 |
using np nq h d |
|
1380 |
proof (induct p q rule: polyadd.induct) |
|
1381 |
case (1 c c') |
|
| 56009 | 1382 |
then show ?case |
1383 |
by (simp add: Nsub_def Nsub0[simplified Nsub_def]) |
|
| 33154 | 1384 |
next |
| 52803 | 1385 |
case (2 c c' n' p') |
| 56009 | 1386 |
from 2 have "degree (C c) = degree (CN c' n' p')" |
1387 |
by simp |
|
1388 |
then have nz: "n' > 0" |
|
1389 |
by (cases n') auto |
|
1390 |
then have "head (CN c' n' p') = CN c' n' p'" |
|
1391 |
by (cases n') auto |
|
1392 |
with 2 show ?case |
|
1393 |
by simp |
|
| 33154 | 1394 |
next |
| 52803 | 1395 |
case (3 c n p c') |
| 56009 | 1396 |
then have "degree (C c') = degree (CN c n p)" |
1397 |
by simp |
|
1398 |
then have nz: "n > 0" |
|
1399 |
by (cases n) auto |
|
1400 |
then have "head (CN c n p) = CN c n p" |
|
1401 |
by (cases n) auto |
|
| 41807 | 1402 |
with 3 show ?case by simp |
| 33154 | 1403 |
next |
1404 |
case (4 c n p c' n' p') |
|
| 56009 | 1405 |
then have H: |
1406 |
"isnpolyh (CN c n p) n0" |
|
1407 |
"isnpolyh (CN c' n' p') n1" |
|
1408 |
"head (CN c n p) = head (CN c' n' p')" |
|
1409 |
"degree (CN c n p) = degree (CN c' n' p')" |
|
1410 |
by simp_all |
|
1411 |
then have degc: "degree c = 0" and degc': "degree c' = 0" |
|
1412 |
by simp_all |
|
1413 |
then have degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0" |
|
| 33154 | 1414 |
using H(1-2) degree_polyneg by auto |
| 56009 | 1415 |
from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')" |
1416 |
by simp_all |
|
1417 |
from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' |
|
1418 |
have degcmc': "degree (c +\<^sub>p ~\<^sub>pc') = 0" |
|
1419 |
by simp |
|
1420 |
from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" |
|
1421 |
by auto |
|
1422 |
have "n = n' \<or> n < n' \<or> n > n'" |
|
1423 |
by arith |
|
| 33154 | 1424 |
moreover |
| 56009 | 1425 |
{
|
1426 |
assume nn': "n = n'" |
|
1427 |
have "n = 0 \<or> n > 0" by arith |
|
1428 |
moreover {
|
|
1429 |
assume nz: "n = 0" |
|
1430 |
then have ?case using 4 nn' |
|
1431 |
by (auto simp add: Let_def degcmc') |
|
1432 |
} |
|
1433 |
moreover {
|
|
1434 |
assume nz: "n > 0" |
|
1435 |
with nn' H(3) have cc': "c = c'" and pp': "p = p'" |
|
1436 |
by (cases n, auto)+ |
|
1437 |
then have ?case |
|
1438 |
using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] |
|
1439 |
using polysub_same_0[OF c'nh, simplified polysub_def] |
|
1440 |
using nn' 4 by (simp add: Let_def) |
|
1441 |
} |
|
1442 |
ultimately have ?case by blast |
|
1443 |
} |
|
| 33154 | 1444 |
moreover |
| 56009 | 1445 |
{
|
1446 |
assume nn': "n < n'" |
|
1447 |
then have n'p: "n' > 0" |
|
1448 |
by simp |
|
1449 |
then have headcnp':"head (CN c' n' p') = CN c' n' p'" |
|
1450 |
by (cases n') simp_all |
|
1451 |
have degcnp': "degree (CN c' n' p') = 0" |
|
1452 |
and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')" |
|
| 52658 | 1453 |
using 4 nn' by (cases n', simp_all) |
| 56009 | 1454 |
then have "n > 0" |
1455 |
by (cases n) simp_all |
|
1456 |
then have headcnp: "head (CN c n p) = CN c n p" |
|
1457 |
by (cases n) auto |
|
1458 |
from H(3) headcnp headcnp' nn' have ?case |
|
1459 |
by auto |
|
1460 |
} |
|
| 33154 | 1461 |
moreover |
| 56009 | 1462 |
{
|
1463 |
assume nn': "n > n'" |
|
1464 |
then have np: "n > 0" by simp |
|
1465 |
then have headcnp:"head (CN c n p) = CN c n p" |
|
1466 |
by (cases n) simp_all |
|
1467 |
from 4 have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" |
|
1468 |
by simp |
|
1469 |
from np have degcnp: "degree (CN c n p) = 0" |
|
1470 |
by (cases n) simp_all |
|
1471 |
with degcnpeq have "n' > 0" |
|
1472 |
by (cases n') simp_all |
|
1473 |
then have headcnp': "head (CN c' n' p') = CN c' n' p'" |
|
1474 |
by (cases n') auto |
|
1475 |
from H(3) headcnp headcnp' nn' have ?case by auto |
|
1476 |
} |
|
1477 |
ultimately show ?case by blast |
|
| 41812 | 1478 |
qed auto |
| 52803 | 1479 |
|
| 33154 | 1480 |
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p" |
| 52658 | 1481 |
by (induct p arbitrary: n0 rule: head.induct) (simp_all add: shift1_def) |
| 33154 | 1482 |
|
1483 |
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p" |
|
| 52658 | 1484 |
proof (induct k arbitrary: n0 p) |
1485 |
case 0 |
|
| 56009 | 1486 |
then show ?case by auto |
| 52658 | 1487 |
next |
1488 |
case (Suc k n0 p) |
|
| 56009 | 1489 |
then have "isnpolyh (shift1 p) 0" by (simp add: shift1_isnpolyh) |
| 41807 | 1490 |
with Suc have "head (funpow k shift1 (shift1 p)) = head (shift1 p)" |
| 52803 | 1491 |
and "head (shift1 p) = head p" by (simp_all add: shift1_head) |
| 56009 | 1492 |
then show ?case by (simp add: funpow_swap1) |
| 52658 | 1493 |
qed |
| 33154 | 1494 |
|
1495 |
lemma shift1_degree: "degree (shift1 p) = 1 + degree p" |
|
1496 |
by (simp add: shift1_def) |
|
| 56009 | 1497 |
|
| 33154 | 1498 |
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p " |
| 46991 | 1499 |
by (induct k arbitrary: p) (auto simp add: shift1_degree) |
| 33154 | 1500 |
|
1501 |
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p" |
|
| 52658 | 1502 |
by (induct n arbitrary: p) simp_all |
| 33154 | 1503 |
|
1504 |
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p" |
|
| 52658 | 1505 |
by (induct p arbitrary: n rule: degree.induct) auto |
| 33154 | 1506 |
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p" |
| 52658 | 1507 |
by (induct p arbitrary: n rule: degreen.induct) auto |
| 33154 | 1508 |
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p" |
| 52658 | 1509 |
by (induct p arbitrary: n rule: degree.induct) auto |
| 33154 | 1510 |
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p" |
| 52658 | 1511 |
by (induct p rule: head.induct) auto |
| 33154 | 1512 |
|
| 52803 | 1513 |
lemma polyadd_eq_const_degree: |
| 52658 | 1514 |
"isnpolyh p n0 \<Longrightarrow> isnpolyh q n1 \<Longrightarrow> polyadd p q = C c \<Longrightarrow> degree p = degree q" |
| 33154 | 1515 |
using polyadd_eq_const_degreen degree_eq_degreen0 by simp |
1516 |
||
| 52658 | 1517 |
lemma polyadd_head: |
1518 |
assumes np: "isnpolyh p n0" |
|
1519 |
and nq: "isnpolyh q n1" |
|
1520 |
and deg: "degree p \<noteq> degree q" |
|
| 33154 | 1521 |
shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)" |
| 52658 | 1522 |
using np nq deg |
1523 |
apply (induct p q arbitrary: n0 n1 rule: polyadd.induct) |
|
1524 |
using np |
|
1525 |
apply simp_all |
|
1526 |
apply (case_tac n', simp, simp) |
|
1527 |
apply (case_tac n, simp, simp) |
|
1528 |
apply (case_tac n, case_tac n', simp add: Let_def) |
|
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54220
diff
changeset
|
1529 |
apply (auto simp add: polyadd_eq_const_degree)[2] |
| 52658 | 1530 |
apply (metis head_nz) |
1531 |
apply (metis head_nz) |
|
1532 |
apply (metis degree.simps(9) gr0_conv_Suc head.simps(1) less_Suc0 not_less_eq) |
|
1533 |
done |
|
| 33154 | 1534 |
|
| 52803 | 1535 |
lemma polymul_head_polyeq: |
| 56000 | 1536 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 33154 | 1537 |
shows "\<lbrakk>isnpolyh p n0; isnpolyh q n1 ; p \<noteq> 0\<^sub>p ; q \<noteq> 0\<^sub>p \<rbrakk> \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q" |
1538 |
proof (induct p q arbitrary: n0 n1 rule: polymul.induct) |
|
| 41813 | 1539 |
case (2 c c' n' p' n0 n1) |
| 56009 | 1540 |
then have "isnpolyh (head (CN c' n' p')) n1" "isnormNum c" |
1541 |
by (simp_all add: head_isnpolyh) |
|
1542 |
then show ?case |
|
1543 |
using 2 by (cases n') auto |
|
| 52803 | 1544 |
next |
1545 |
case (3 c n p c' n0 n1) |
|
| 56009 | 1546 |
then have "isnpolyh (head (CN c n p)) n0" "isnormNum c'" |
1547 |
by (simp_all add: head_isnpolyh) |
|
1548 |
then show ?case using 3 |
|
1549 |
by (cases n) auto |
|
| 33154 | 1550 |
next |
1551 |
case (4 c n p c' n' p' n0 n1) |
|
1552 |
hence norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')" |
|
1553 |
"isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'" |
|
1554 |
by simp_all |
|
1555 |
have "n < n' \<or> n' < n \<or> n = n'" by arith |
|
| 52803 | 1556 |
moreover |
| 56009 | 1557 |
{
|
1558 |
assume nn': "n < n'" |
|
1559 |
then have ?case |
|
| 52658 | 1560 |
using norm "4.hyps"(2)[OF norm(1,6)] "4.hyps"(1)[OF norm(2,6)] |
1561 |
apply simp |
|
1562 |
apply (cases n) |
|
1563 |
apply simp |
|
1564 |
apply (cases n') |
|
1565 |
apply simp_all |
|
| 56009 | 1566 |
done |
1567 |
} |
|
1568 |
moreover {
|
|
1569 |
assume nn': "n'< n" |
|
1570 |
then have ?case |
|
| 52803 | 1571 |
using norm "4.hyps"(6) [OF norm(5,3)] "4.hyps"(5)[OF norm(5,4)] |
| 52658 | 1572 |
apply simp |
1573 |
apply (cases n') |
|
1574 |
apply simp |
|
1575 |
apply (cases n) |
|
1576 |
apply auto |
|
| 56009 | 1577 |
done |
1578 |
} |
|
1579 |
moreover {
|
|
1580 |
assume nn': "n' = n" |
|
| 52803 | 1581 |
from nn' polymul_normh[OF norm(5,4)] |
| 33154 | 1582 |
have ncnpc':"isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def) |
| 52803 | 1583 |
from nn' polymul_normh[OF norm(5,3)] norm |
| 33154 | 1584 |
have ncnpp':"isnpolyh (CN c n p *\<^sub>p p') n" by simp |
1585 |
from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6) |
|
| 52803 | 1586 |
have ncnpp0':"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp |
1587 |
from polyadd_normh[OF ncnpc' ncnpp0'] |
|
1588 |
have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n" |
|
| 33154 | 1589 |
by (simp add: min_def) |
| 56009 | 1590 |
{
|
1591 |
assume np: "n > 0" |
|
| 33154 | 1592 |
with nn' head_isnpolyh_Suc'[OF np nth] |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1593 |
head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']] |
| 56009 | 1594 |
have ?case by simp |
1595 |
} |
|
| 33154 | 1596 |
moreover |
| 56009 | 1597 |
{
|
1598 |
assume nz: "n = 0" |
|
| 33154 | 1599 |
from polymul_degreen[OF norm(5,4), where m="0"] |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1600 |
polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0 |
| 33154 | 1601 |
norm(5,6) degree_npolyhCN[OF norm(6)] |
1602 |
have dth:"degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp |
|
1603 |
hence dth':"degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp |
|
1604 |
from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth |
|
| 41813 | 1605 |
have ?case using norm "4.hyps"(6)[OF norm(5,3)] |
| 56009 | 1606 |
"4.hyps"(5)[OF norm(5,4)] nn' nz by simp |
1607 |
} |
|
1608 |
ultimately have ?case by (cases n) auto |
|
1609 |
} |
|
| 33154 | 1610 |
ultimately show ?case by blast |
1611 |
qed simp_all |
|
1612 |
||
1613 |
lemma degree_coefficients: "degree p = length (coefficients p) - 1" |
|
| 52658 | 1614 |
by (induct p rule: degree.induct) auto |
| 33154 | 1615 |
|
1616 |
lemma degree_head[simp]: "degree (head p) = 0" |
|
| 52658 | 1617 |
by (induct p rule: head.induct) auto |
| 33154 | 1618 |
|
| 41812 | 1619 |
lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1 + degree p" |
| 52658 | 1620 |
by (cases n) simp_all |
| 33154 | 1621 |
lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge> degree p" |
| 52658 | 1622 |
by (cases n) simp_all |
| 33154 | 1623 |
|
| 52658 | 1624 |
lemma polyadd_different_degree: |
1625 |
"\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degree p \<noteq> degree q\<rbrakk> \<Longrightarrow> |
|
1626 |
degree (polyadd p q) = max (degree p) (degree q)" |
|
| 33154 | 1627 |
using polyadd_different_degreen degree_eq_degreen0 by simp |
1628 |
||
1629 |
lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m" |
|
| 52658 | 1630 |
by (induct p arbitrary: n0 rule: polyneg.induct) auto |
| 33154 | 1631 |
|
1632 |
lemma degree_polymul: |
|
| 56000 | 1633 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 1634 |
and np: "isnpolyh p n0" |
1635 |
and nq: "isnpolyh q n1" |
|
| 33154 | 1636 |
shows "degree (p *\<^sub>p q) \<le> degree p + degree q" |
1637 |
using polymul_degreen[OF np nq, where m="0"] degree_eq_degreen0 by simp |
|
1638 |
||
1639 |
lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p" |
|
| 52658 | 1640 |
by (induct p arbitrary: n rule: degree.induct) auto |
| 33154 | 1641 |
|
1642 |
lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head(polyneg p) = polyneg (head p)" |
|
| 52658 | 1643 |
by (induct p arbitrary: n rule: degree.induct) auto |
1644 |
||
| 33154 | 1645 |
|
1646 |
subsection {* Correctness of polynomial pseudo division *}
|
|
1647 |
||
1648 |
lemma polydivide_aux_properties: |
|
| 56000 | 1649 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52658 | 1650 |
and np: "isnpolyh p n0" |
1651 |
and ns: "isnpolyh s n1" |
|
1652 |
and ap: "head p = a" |
|
1653 |
and ndp: "degree p = n" and pnz: "p \<noteq> 0\<^sub>p" |
|
| 52803 | 1654 |
shows "(polydivide_aux a n p k s = (k',r) \<longrightarrow> (k' \<ge> k) \<and> (degree r = 0 \<or> degree r < degree p) |
| 33154 | 1655 |
\<and> (\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> ((polypow (k' - k) a) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)))" |
1656 |
using ns |
|
| 52658 | 1657 |
proof (induct "degree s" arbitrary: s k k' r n1 rule: less_induct) |
| 34915 | 1658 |
case less |
| 33154 | 1659 |
let ?qths = "\<exists>q n1. isnpolyh q n1 \<and> (a ^\<^sub>p (k' - k) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" |
| 52803 | 1660 |
let ?ths = "polydivide_aux a n p k s = (k', r) \<longrightarrow> k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) |
| 33154 | 1661 |
\<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths" |
1662 |
let ?b = "head s" |
|
| 34915 | 1663 |
let ?p' = "funpow (degree s - n) shift1 p" |
|
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
1664 |
let ?xdn = "funpow (degree s - n) shift1 (1)\<^sub>p" |
| 33154 | 1665 |
let ?akk' = "a ^\<^sub>p (k' - k)" |
| 34915 | 1666 |
note ns = `isnpolyh s n1` |
| 52803 | 1667 |
from np have np0: "isnpolyh p 0" |
1668 |
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by simp |
|
1669 |
have np': "isnpolyh ?p' 0" |
|
1670 |
using funpow_shift1_isnpoly[OF np0[simplified isnpoly_def[symmetric]] pnz, where n="degree s - n"] isnpoly_def |
|
1671 |
by simp |
|
1672 |
have headp': "head ?p' = head p" |
|
1673 |
using funpow_shift1_head[OF np pnz] by simp |
|
1674 |
from funpow_shift1_isnpoly[where p="(1)\<^sub>p"] have nxdn: "isnpolyh ?xdn 0" |
|
1675 |
by (simp add: isnpoly_def) |
|
1676 |
from polypow_normh [OF head_isnpolyh[OF np0], where k="k' - k"] ap |
|
| 33154 | 1677 |
have nakk':"isnpolyh ?akk' 0" by blast |
| 52658 | 1678 |
{ assume sz: "s = 0\<^sub>p"
|
1679 |
hence ?ths using np polydivide_aux.simps |
|
1680 |
apply clarsimp |
|
1681 |
apply (rule exI[where x="0\<^sub>p"]) |
|
1682 |
apply simp |
|
1683 |
done } |
|
| 33154 | 1684 |
moreover |
| 52803 | 1685 |
{ assume sz: "s \<noteq> 0\<^sub>p"
|
1686 |
{ assume dn: "degree s < n"
|
|
| 52658 | 1687 |
hence "?ths" using ns ndp np polydivide_aux.simps |
1688 |
apply auto |
|
1689 |
apply (rule exI[where x="0\<^sub>p"]) |
|
1690 |
apply simp |
|
1691 |
done } |
|
| 52803 | 1692 |
moreover |
1693 |
{ assume dn': "\<not> degree s < n" hence dn: "degree s \<ge> n" by arith
|
|
1694 |
have degsp': "degree s = degree ?p'" |
|
| 34915 | 1695 |
using dn ndp funpow_shift1_degree[where k = "degree s - n" and p="p"] by simp |
| 52803 | 1696 |
{ assume ba: "?b = a"
|
1697 |
hence headsp': "head s = head ?p'" |
|
1698 |
using ap headp' by simp |
|
1699 |
have nr: "isnpolyh (s -\<^sub>p ?p') 0" |
|
1700 |
using polysub_normh[OF ns np'] by simp |
|
| 34915 | 1701 |
from degree_polysub_samehead[OF ns np' headsp' degsp'] |
1702 |
have "degree (s -\<^sub>p ?p') < degree s \<or> s -\<^sub>p ?p' = 0\<^sub>p" by simp |
|
| 52803 | 1703 |
moreover |
1704 |
{ assume deglt:"degree (s -\<^sub>p ?p') < degree s"
|
|
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1705 |
from polydivide_aux.simps sz dn' ba |
|
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1706 |
have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1707 |
by (simp add: Let_def) |
| 52803 | 1708 |
{ assume h1: "polydivide_aux a n p k s = (k', r)"
|
1709 |
from less(1)[OF deglt nr, of k k' r] trans[OF eq[symmetric] h1] |
|
1710 |
have kk': "k \<le> k'" |
|
1711 |
and nr:"\<exists>nr. isnpolyh r nr" |
|
1712 |
and dr: "degree r = 0 \<or> degree r < degree p" |
|
1713 |
and q1: "\<exists>q nq. isnpolyh q nq \<and> (a ^\<^sub>p k' - k *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r)" |
|
1714 |
by auto |
|
1715 |
from q1 obtain q n1 where nq: "isnpolyh q n1" |
|
1716 |
and asp:"a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p') = p *\<^sub>p q +\<^sub>p r" by blast |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1717 |
from nr obtain nr where nr': "isnpolyh r nr" by blast |
| 52803 | 1718 |
from polymul_normh[OF nakk' ns] have nakks': "isnpolyh (a ^\<^sub>p (k' - k) *\<^sub>p s) 0" |
1719 |
by simp |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1720 |
from polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq] |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1721 |
have nq': "isnpolyh (?akk' *\<^sub>p ?xdn +\<^sub>p q) 0" by simp |
| 52803 | 1722 |
from polyadd_normh[OF polymul_normh[OF np |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1723 |
polyadd_normh[OF polymul_normh[OF nakk' nxdn] nq]] nr'] |
| 52803 | 1724 |
have nqr': "isnpolyh (p *\<^sub>p (?akk' *\<^sub>p ?xdn +\<^sub>p q) +\<^sub>p r) 0" |
1725 |
by simp |
|
| 56000 | 1726 |
from asp have "\<forall> (bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a^\<^sub>p (k' - k) *\<^sub>p (s -\<^sub>p ?p')) =
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1727 |
Ipoly bs (p *\<^sub>p q +\<^sub>p r)" by simp |
| 56000 | 1728 |
hence " \<forall>(bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a^\<^sub>p (k' - k)*\<^sub>p s) =
|
| 52803 | 1729 |
Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs ?p' + Ipoly bs p * Ipoly bs q + Ipoly bs r" |
| 36349 | 1730 |
by (simp add: field_simps) |
| 56000 | 1731 |
hence " \<forall>(bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
|
| 52803 | 1732 |
Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p *\<^sub>p p) + |
1733 |
Ipoly bs p * Ipoly bs q + Ipoly bs r" |
|
1734 |
by (auto simp only: funpow_shift1_1) |
|
| 56000 | 1735 |
hence "\<forall>(bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
|
| 52803 | 1736 |
Ipoly bs p * (Ipoly bs (a^\<^sub>p (k' - k)) * Ipoly bs (funpow (degree s - n) shift1 (1)\<^sub>p) + |
1737 |
Ipoly bs q) + Ipoly bs r" |
|
1738 |
by (simp add: field_simps) |
|
| 56000 | 1739 |
hence "\<forall>(bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
|
| 52803 | 1740 |
Ipoly bs (p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r)" |
1741 |
by simp |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1742 |
with isnpolyh_unique[OF nakks' nqr'] |
| 52803 | 1743 |
have "a ^\<^sub>p (k' - k) *\<^sub>p s = |
1744 |
p *\<^sub>p ((a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q) +\<^sub>p r" |
|
1745 |
by blast |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1746 |
hence ?qths using nq' |
|
50282
fe4d4bb9f4c2
more robust syntax that survives collapse of \<^isub> and \<^sub>;
wenzelm
parents:
49962
diff
changeset
|
1747 |
apply (rule_tac x="(a^\<^sub>p (k' - k)) *\<^sub>p (funpow (degree s - n) shift1 (1)\<^sub>p) +\<^sub>p q" in exI) |
| 52803 | 1748 |
apply (rule_tac x="0" in exI) |
1749 |
apply simp |
|
1750 |
done |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1751 |
with kk' nr dr have "k \<le> k' \<and> (degree r = 0 \<or> degree r < degree p) \<and> (\<exists>nr. isnpolyh r nr) \<and> ?qths" |
| 52803 | 1752 |
by blast |
1753 |
} |
|
1754 |
hence ?ths by blast |
|
1755 |
} |
|
1756 |
moreover |
|
1757 |
{ assume spz:"s -\<^sub>p ?p' = 0\<^sub>p"
|
|
| 56000 | 1758 |
from spz isnpolyh_unique[OF polysub_normh[OF ns np'], where q="0\<^sub>p", symmetric, where ?'a = "'a::{field_char_0,field_inverse_zero}"]
|
1759 |
have " \<forall>(bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs s = Ipoly bs ?p'"
|
|
| 52803 | 1760 |
by simp |
| 56000 | 1761 |
hence "\<forall>(bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs s = Ipoly bs (?xdn *\<^sub>p p)"
|
| 52658 | 1762 |
using np nxdn |
1763 |
apply simp |
|
1764 |
apply (simp only: funpow_shift1_1) |
|
1765 |
apply simp |
|
1766 |
done |
|
1767 |
hence sp': "s = ?xdn *\<^sub>p p" using isnpolyh_unique[OF ns polymul_normh[OF nxdn np]] |
|
1768 |
by blast |
|
| 52803 | 1769 |
{ assume h1: "polydivide_aux a n p k s = (k',r)"
|
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1770 |
from polydivide_aux.simps sz dn' ba |
|
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1771 |
have eq: "polydivide_aux a n p k s = polydivide_aux a n p k (s -\<^sub>p ?p')" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1772 |
by (simp add: Let_def) |
| 52803 | 1773 |
also have "\<dots> = (k,0\<^sub>p)" |
1774 |
using polydivide_aux.simps spz by simp |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1775 |
finally have "(k',r) = (k,0\<^sub>p)" using h1 by simp |
| 34915 | 1776 |
with sp'[symmetric] ns np nxdn polyadd_0(1)[OF polymul_normh[OF np nxdn]] |
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1777 |
polyadd_0(2)[OF polymul_normh[OF np nxdn]] have ?ths |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1778 |
apply auto |
| 52803 | 1779 |
apply (rule exI[where x="?xdn"]) |
| 34915 | 1780 |
apply (auto simp add: polymul_commute[of p]) |
| 52803 | 1781 |
done |
1782 |
} |
|
1783 |
} |
|
1784 |
ultimately have ?ths by blast |
|
1785 |
} |
|
| 33154 | 1786 |
moreover |
| 52803 | 1787 |
{ assume ba: "?b \<noteq> a"
|
1788 |
from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1789 |
polymul_normh[OF head_isnpolyh[OF ns] np']] |
| 52803 | 1790 |
have nth: "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" |
1791 |
by (simp add: min_def) |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1792 |
have nzths: "a *\<^sub>p s \<noteq> 0\<^sub>p" "?b *\<^sub>p ?p' \<noteq> 0\<^sub>p" |
| 52803 | 1793 |
using polymul_eq0_iff[OF head_isnpolyh[OF np0, simplified ap] ns] |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1794 |
polymul_eq0_iff[OF head_isnpolyh[OF ns] np']head_nz[OF np0] ap pnz sz head_nz[OF ns] |
| 52803 | 1795 |
funpow_shift1_nz[OF pnz] |
1796 |
by simp_all |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1797 |
from polymul_head_polyeq[OF head_isnpolyh[OF np] ns] head_nz[OF np] sz ap head_head[OF np] pnz |
| 34915 | 1798 |
polymul_head_polyeq[OF head_isnpolyh[OF ns] np'] head_nz [OF ns] sz funpow_shift1_nz[OF pnz, where n="degree s - n"] |
| 52803 | 1799 |
have hdth: "head (a *\<^sub>p s) = head (?b *\<^sub>p ?p')" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1800 |
using head_head[OF ns] funpow_shift1_head[OF np pnz] |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1801 |
polymul_commute[OF head_isnpolyh[OF np] head_isnpolyh[OF ns]] |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1802 |
by (simp add: ap) |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1803 |
from polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"] |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1804 |
head_nz[OF np] pnz sz ap[symmetric] |
| 34915 | 1805 |
funpow_shift1_nz[OF pnz, where n="degree s - n"] |
| 52803 | 1806 |
polymul_degreen[OF head_isnpolyh[OF ns] np', where m="0"] head_nz[OF ns] |
| 34915 | 1807 |
ndp dn |
| 52803 | 1808 |
have degth: "degree (a *\<^sub>p s) = degree (?b *\<^sub>p ?p')" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1809 |
by (simp add: degree_eq_degreen0[symmetric] funpow_shift1_degree) |
| 52803 | 1810 |
{ assume dth: "degree ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) < degree s"
|
1811 |
from polysub_normh[OF polymul_normh[OF head_isnpolyh[OF np] ns] |
|
1812 |
polymul_normh[OF head_isnpolyh[OF ns]np']] ap |
|
1813 |
have nasbp': "isnpolyh ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) 0" |
|
1814 |
by simp |
|
1815 |
{ assume h1:"polydivide_aux a n p k s = (k', r)"
|
|
|
41403
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1816 |
from h1 polydivide_aux.simps sz dn' ba |
|
7eba049f7310
partial_function (tailrec) replaces function (tailrec);
krauss
parents:
39246
diff
changeset
|
1817 |
have eq:"polydivide_aux a n p (Suc k) ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = (k',r)" |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1818 |
by (simp add: Let_def) |
| 34915 | 1819 |
with less(1)[OF dth nasbp', of "Suc k" k' r] |
| 52803 | 1820 |
obtain q nq nr where kk': "Suc k \<le> k'" |
1821 |
and nr: "isnpolyh r nr" |
|
1822 |
and nq: "isnpolyh q nq" |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1823 |
and dr: "degree r = 0 \<or> degree r < degree p" |
| 52803 | 1824 |
and qr: "a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p')) = p *\<^sub>p q +\<^sub>p r" |
1825 |
by auto |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1826 |
from kk' have kk'':"Suc (k' - Suc k) = k' - k" by arith |
| 52803 | 1827 |
{
|
| 56000 | 1828 |
fix bs:: "'a::{field_char_0,field_inverse_zero} list"
|
| 52803 | 1829 |
from qr isnpolyh_unique[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k", simplified ap] nasbp', symmetric] |
1830 |
have "Ipoly bs (a ^\<^sub>p (k' - Suc k) *\<^sub>p ((a *\<^sub>p s) -\<^sub>p (?b *\<^sub>p ?p'))) = Ipoly bs (p *\<^sub>p q +\<^sub>p r)" |
|
1831 |
by simp |
|
1832 |
hence "Ipoly bs a ^ (Suc (k' - Suc k)) * Ipoly bs s = |
|
1833 |
Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?p' + Ipoly bs r" |
|
1834 |
by (simp add: field_simps) |
|
1835 |
hence "Ipoly bs a ^ (k' - k) * Ipoly bs s = |
|
1836 |
Ipoly bs p * Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn * Ipoly bs p + Ipoly bs r" |
|
1837 |
by (simp add: kk'' funpow_shift1_1[where n="degree s - n" and p="p"]) |
|
1838 |
hence "Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) = |
|
1839 |
Ipoly bs p * (Ipoly bs q + Ipoly bs a ^ (k' - Suc k) * Ipoly bs ?b * Ipoly bs ?xdn) + Ipoly bs r" |
|
1840 |
by (simp add: field_simps) |
|
1841 |
} |
|
| 56000 | 1842 |
hence ieq:"\<forall>(bs :: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a ^\<^sub>p (k' - k) *\<^sub>p s) =
|
| 52803 | 1843 |
Ipoly bs (p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r)" |
1844 |
by auto |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1845 |
let ?q = "q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)" |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1846 |
from polyadd_normh[OF nq polymul_normh[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - Suc k"] head_isnpolyh[OF ns], simplified ap ] nxdn]] |
| 52803 | 1847 |
have nqw: "isnpolyh ?q 0" |
1848 |
by simp |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1849 |
from ieq isnpolyh_unique[OF polymul_normh[OF polypow_normh[OF head_isnpolyh[OF np], where k="k' - k"] ns, simplified ap] polyadd_normh[OF polymul_normh[OF np nqw] nr]] |
| 52803 | 1850 |
have asth: "(a ^\<^sub>p (k' - k) *\<^sub>p s) = p *\<^sub>p (q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn)) +\<^sub>p r" |
1851 |
by blast |
|
1852 |
from dr kk' nr h1 asth nqw have ?ths |
|
1853 |
apply simp |
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1854 |
apply (rule conjI) |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1855 |
apply (rule exI[where x="nr"], simp) |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1856 |
apply (rule exI[where x="(q +\<^sub>p (a ^\<^sub>p (k' - Suc k) *\<^sub>p ?b *\<^sub>p ?xdn))"], simp) |
|
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1857 |
apply (rule exI[where x="0"], simp) |
| 52803 | 1858 |
done |
1859 |
} |
|
1860 |
hence ?ths by blast |
|
1861 |
} |
|
1862 |
moreover |
|
1863 |
{ assume spz: "a *\<^sub>p s -\<^sub>p (?b *\<^sub>p ?p') = 0\<^sub>p"
|
|
1864 |
{
|
|
| 56000 | 1865 |
fix bs :: "'a::{field_char_0,field_inverse_zero} list"
|
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1866 |
from isnpolyh_unique[OF nth, where ?'a="'a" and q="0\<^sub>p",simplified,symmetric] spz |
| 52803 | 1867 |
have "Ipoly bs (a*\<^sub>p s) = Ipoly bs ?b * Ipoly bs ?p'" |
1868 |
by simp |
|
1869 |
hence "Ipoly bs (a*\<^sub>p s) = Ipoly bs (?b *\<^sub>p ?xdn) * Ipoly bs p" |
|
1870 |
by (simp add: funpow_shift1_1[where n="degree s - n" and p="p"]) |
|
1871 |
hence "Ipoly bs (a*\<^sub>p s) = Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" |
|
1872 |
by simp |
|
1873 |
} |
|
| 56000 | 1874 |
hence hth: "\<forall> (bs:: 'a::{field_char_0,field_inverse_zero} list). Ipoly bs (a*\<^sub>p s) =
|
| 52658 | 1875 |
Ipoly bs (p *\<^sub>p (?b *\<^sub>p ?xdn))" .. |
| 52803 | 1876 |
from hth have asq: "a *\<^sub>p s = p *\<^sub>p (?b *\<^sub>p ?xdn)" |
| 56000 | 1877 |
using isnpolyh_unique[where ?'a = "'a::{field_char_0,field_inverse_zero}", OF polymul_normh[OF head_isnpolyh[OF np] ns]
|
| 33154 | 1878 |
polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]], |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33154
diff
changeset
|
1879 |
simplified ap] by simp |
| 52803 | 1880 |
{ assume h1: "polydivide_aux a n p k s = (k', r)"
|
1881 |
from h1 sz ba dn' spz polydivide_aux.simps polydivide_aux.simps |
|
1882 |
have "(k',r) = (Suc k, 0\<^sub>p)" by (simp add: Let_def) |
|
1883 |
with h1 np head_isnpolyh[OF np, simplified ap] ns polymul_normh[OF head_isnpolyh[OF ns] nxdn] |
|
1884 |
polymul_normh[OF np polymul_normh[OF head_isnpolyh[OF ns] nxdn]] asq |
|
1885 |
have ?ths |
|
1886 |
apply (clarsimp simp add: Let_def) |
|
1887 |
apply (rule exI[where x="?b *\<^sub>p ?xdn"]) |
|
1888 |
apply simp |
|
1889 |
apply (rule exI[where x="0"], simp) |
|
1890 |
done |
|
1891 |
} |
|
1892 |
hence ?ths by blast |
|
1893 |
} |
|
| 52658 | 1894 |
ultimately have ?ths |
1895 |
using degree_polysub_samehead[OF polymul_normh[OF head_isnpolyh[OF np0, simplified ap] ns] polymul_normh[OF head_isnpolyh[OF ns] np'] hdth degth] polymul_degreen[OF head_isnpolyh[OF np] ns, where m="0"] |
|
1896 |
head_nz[OF np] pnz sz ap[symmetric] |
|
| 52803 | 1897 |
by (simp add: degree_eq_degreen0[symmetric]) blast |
1898 |
} |
|
| 33154 | 1899 |
ultimately have ?ths by blast |
1900 |
} |
|
| 52803 | 1901 |
ultimately have ?ths by blast |
1902 |
} |
|
| 33154 | 1903 |
ultimately show ?ths by blast |
1904 |
qed |
|
1905 |
||
| 52803 | 1906 |
lemma polydivide_properties: |
| 56000 | 1907 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 52803 | 1908 |
and np: "isnpolyh p n0" and ns: "isnpolyh s n1" and pnz: "p \<noteq> 0\<^sub>p" |
1909 |
shows "\<exists>k r. polydivide s p = (k,r) \<and> |
|
1910 |
(\<exists>nr. isnpolyh r nr) \<and> (degree r = 0 \<or> degree r < degree p) \<and> |
|
1911 |
(\<exists>q n1. isnpolyh q n1 \<and> ((polypow k (head p)) *\<^sub>p s = p *\<^sub>p q +\<^sub>p r))" |
|
1912 |
proof - |
|
1913 |
have trv: "head p = head p" "degree p = degree p" |
|
1914 |
by simp_all |
|
1915 |
from polydivide_def[where s="s" and p="p"] have ex: "\<exists> k r. polydivide s p = (k,r)" |
|
1916 |
by auto |
|
1917 |
then obtain k r where kr: "polydivide s p = (k,r)" |
|
1918 |
by blast |
|
| 56000 | 1919 |
from trans[OF polydivide_def[where s="s"and p="p", symmetric] kr] |
| 33154 | 1920 |
polydivide_aux_properties[OF np ns trv pnz, where k="0" and k'="k" and r="r"] |
1921 |
have "(degree r = 0 \<or> degree r < degree p) \<and> |
|
| 52803 | 1922 |
(\<exists>nr. isnpolyh r nr) \<and> (\<exists>q n1. isnpolyh q n1 \<and> head p ^\<^sub>p k - 0 *\<^sub>p s = p *\<^sub>p q +\<^sub>p r)" |
1923 |
by blast |
|
1924 |
with kr show ?thesis |
|
| 33154 | 1925 |
apply - |
1926 |
apply (rule exI[where x="k"]) |
|
1927 |
apply (rule exI[where x="r"]) |
|
1928 |
apply simp |
|
1929 |
done |
|
1930 |
qed |
|
1931 |
||
| 52658 | 1932 |
|
| 33154 | 1933 |
subsection{* More about polypoly and pnormal etc *}
|
1934 |
||
| 56000 | 1935 |
definition "isnonconstant p \<longleftrightarrow> \<not> isconstant p" |
| 33154 | 1936 |
|
| 52658 | 1937 |
lemma isnonconstant_pnormal_iff: |
| 52803 | 1938 |
assumes nc: "isnonconstant p" |
1939 |
shows "pnormal (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" |
|
| 33154 | 1940 |
proof |
| 52803 | 1941 |
let ?p = "polypoly bs p" |
| 33154 | 1942 |
assume H: "pnormal ?p" |
| 52658 | 1943 |
have csz: "coefficients p \<noteq> []" using nc by (cases p) auto |
| 52803 | 1944 |
|
1945 |
from coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] |
|
| 33154 | 1946 |
pnormal_last_nonzero[OF H] |
1947 |
show "Ipoly bs (head p) \<noteq> 0" by (simp add: polypoly_def) |
|
1948 |
next |
|
1949 |
assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
|
1950 |
let ?p = "polypoly bs p" |
|
| 52658 | 1951 |
have csz: "coefficients p \<noteq> []" using nc by (cases p) auto |
| 52803 | 1952 |
hence pz: "?p \<noteq> []" by (simp add: polypoly_def) |
| 33154 | 1953 |
hence lg: "length ?p > 0" by simp |
| 52803 | 1954 |
from h coefficients_head[of p] last_map[OF csz, of "Ipoly bs"] |
| 33154 | 1955 |
have lz: "last ?p \<noteq> 0" by (simp add: polypoly_def) |
1956 |
from pnormal_last_length[OF lg lz] show "pnormal ?p" . |
|
1957 |
qed |
|
1958 |
||
1959 |
lemma isnonconstant_coefficients_length: "isnonconstant p \<Longrightarrow> length (coefficients p) > 1" |
|
1960 |
unfolding isnonconstant_def |
|
| 52658 | 1961 |
apply (cases p) |
1962 |
apply simp_all |
|
1963 |
apply (case_tac nat) |
|
1964 |
apply auto |
|
| 33154 | 1965 |
done |
| 52658 | 1966 |
|
1967 |
lemma isnonconstant_nonconstant: |
|
1968 |
assumes inc: "isnonconstant p" |
|
| 33154 | 1969 |
shows "nonconstant (polypoly bs p) \<longleftrightarrow> Ipoly bs (head p) \<noteq> 0" |
1970 |
proof |
|
1971 |
let ?p = "polypoly bs p" |
|
1972 |
assume nc: "nonconstant ?p" |
|
1973 |
from isnonconstant_pnormal_iff[OF inc, of bs] nc |
|
1974 |
show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" unfolding nonconstant_def by blast |
|
1975 |
next |
|
1976 |
let ?p = "polypoly bs p" |
|
1977 |
assume h: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
|
1978 |
from isnonconstant_pnormal_iff[OF inc, of bs] h |
|
1979 |
have pn: "pnormal ?p" by blast |
|
| 56009 | 1980 |
{
|
1981 |
fix x |
|
1982 |
assume H: "?p = [x]" |
|
1983 |
from H have "length (coefficients p) = 1" |
|
1984 |
unfolding polypoly_def by auto |
|
1985 |
with isnonconstant_coefficients_length[OF inc] |
|
1986 |
have False by arith |
|
1987 |
} |
|
1988 |
then show "nonconstant ?p" |
|
1989 |
using pn unfolding nonconstant_def by blast |
|
| 33154 | 1990 |
qed |
1991 |
||
1992 |
lemma pnormal_length: "p\<noteq>[] \<Longrightarrow> pnormal p \<longleftrightarrow> length (pnormalize p) = length p" |
|
| 52658 | 1993 |
apply (induct p) |
1994 |
apply (simp_all add: pnormal_def) |
|
1995 |
apply (case_tac "p = []") |
|
1996 |
apply simp_all |
|
1997 |
done |
|
| 33154 | 1998 |
|
| 52658 | 1999 |
lemma degree_degree: |
2000 |
assumes inc: "isnonconstant p" |
|
| 33154 | 2001 |
shows "degree p = Polynomial_List.degree (polypoly bs p) \<longleftrightarrow> \<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
2002 |
proof |
|
| 52803 | 2003 |
let ?p = "polypoly bs p" |
| 33154 | 2004 |
assume H: "degree p = Polynomial_List.degree ?p" |
2005 |
from isnonconstant_coefficients_length[OF inc] have pz: "?p \<noteq> []" |
|
2006 |
unfolding polypoly_def by auto |
|
2007 |
from H degree_coefficients[of p] isnonconstant_coefficients_length[OF inc] |
|
2008 |
have lg:"length (pnormalize ?p) = length ?p" |
|
2009 |
unfolding Polynomial_List.degree_def polypoly_def by simp |
|
| 52803 | 2010 |
hence "pnormal ?p" using pnormal_length[OF pz] by blast |
2011 |
with isnonconstant_pnormal_iff[OF inc] |
|
| 33154 | 2012 |
show "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" by blast |
2013 |
next |
|
| 52803 | 2014 |
let ?p = "polypoly bs p" |
| 33154 | 2015 |
assume H: "\<lparr>head p\<rparr>\<^sub>p\<^bsup>bs\<^esup> \<noteq> 0" |
2016 |
with isnonconstant_pnormal_iff[OF inc] have "pnormal ?p" by blast |
|
2017 |
with degree_coefficients[of p] isnonconstant_coefficients_length[OF inc] |
|
| 52803 | 2018 |
show "degree p = Polynomial_List.degree ?p" |
| 33154 | 2019 |
unfolding polypoly_def pnormal_def Polynomial_List.degree_def by auto |
2020 |
qed |
|
2021 |
||
| 52658 | 2022 |
|
| 52803 | 2023 |
section {* Swaps ; Division by a certain variable *}
|
| 52658 | 2024 |
|
| 52803 | 2025 |
primrec swap :: "nat \<Rightarrow> nat \<Rightarrow> poly \<Rightarrow> poly" where |
| 33154 | 2026 |
"swap n m (C x) = C x" |
| 39246 | 2027 |
| "swap n m (Bound k) = Bound (if k = n then m else if k=m then n else k)" |
2028 |
| "swap n m (Neg t) = Neg (swap n m t)" |
|
2029 |
| "swap n m (Add s t) = Add (swap n m s) (swap n m t)" |
|
2030 |
| "swap n m (Sub s t) = Sub (swap n m s) (swap n m t)" |
|
2031 |
| "swap n m (Mul s t) = Mul (swap n m s) (swap n m t)" |
|
2032 |
| "swap n m (Pw t k) = Pw (swap n m t) k" |
|
| 52803 | 2033 |
| "swap n m (CN c k p) = |
2034 |
CN (swap n m c) (if k = n then m else if k=m then n else k) (swap n m p)" |
|
| 33154 | 2035 |
|
| 52658 | 2036 |
lemma swap: |
2037 |
assumes nbs: "n < length bs" |
|
2038 |
and mbs: "m < length bs" |
|
| 33154 | 2039 |
shows "Ipoly bs (swap n m t) = Ipoly ((bs[n:= bs!m])[m:= bs!n]) t" |
2040 |
proof (induct t) |
|
| 52658 | 2041 |
case (Bound k) |
| 56009 | 2042 |
then show ?case using nbs mbs by simp |
| 33154 | 2043 |
next |
| 52658 | 2044 |
case (CN c k p) |
| 56009 | 2045 |
then show ?case using nbs mbs by simp |
| 33154 | 2046 |
qed simp_all |
2047 |
||
| 52658 | 2048 |
lemma swap_swap_id [simp]: "swap n m (swap m n t) = t" |
2049 |
by (induct t) simp_all |
|
2050 |
||
2051 |
lemma swap_commute: "swap n m p = swap m n p" |
|
2052 |
by (induct p) simp_all |
|
| 33154 | 2053 |
|
2054 |
lemma swap_same_id[simp]: "swap n n t = t" |
|
| 52658 | 2055 |
by (induct t) simp_all |
| 33154 | 2056 |
|
2057 |
definition "swapnorm n m t = polynate (swap n m t)" |
|
2058 |
||
| 52658 | 2059 |
lemma swapnorm: |
2060 |
assumes nbs: "n < length bs" |
|
2061 |
and mbs: "m < length bs" |
|
| 56000 | 2062 |
shows "((Ipoly bs (swapnorm n m t) :: 'a::{field_char_0,field_inverse_zero})) =
|
| 52658 | 2063 |
Ipoly ((bs[n:= bs!m])[m:= bs!n]) t" |
| 41807 | 2064 |
using swap[OF assms] swapnorm_def by simp |
| 33154 | 2065 |
|
| 52658 | 2066 |
lemma swapnorm_isnpoly [simp]: |
| 56000 | 2067 |
assumes "SORT_CONSTRAINT('a::{field_char_0,field_inverse_zero})"
|
| 33154 | 2068 |
shows "isnpoly (swapnorm n m p)" |
2069 |
unfolding swapnorm_def by simp |
|
2070 |
||
| 52803 | 2071 |
definition "polydivideby n s p = |
| 56000 | 2072 |
(let |
2073 |
ss = swapnorm 0 n s; |
|
2074 |
sp = swapnorm 0 n p; |
|
2075 |
h = head sp; |
|
2076 |
(k, r) = polydivide ss sp |
|
2077 |
in (k, swapnorm 0 n h, swapnorm 0 n r))" |
|
| 33154 | 2078 |
|
| 56000 | 2079 |
lemma swap_nz [simp]: "swap n m p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" |
| 52658 | 2080 |
by (induct p) simp_all |
| 33154 | 2081 |
|
| 41808 | 2082 |
fun isweaknpoly :: "poly \<Rightarrow> bool" |
2083 |
where |
|
| 33154 | 2084 |
"isweaknpoly (C c) = True" |
| 41808 | 2085 |
| "isweaknpoly (CN c n p) \<longleftrightarrow> isweaknpoly c \<and> isweaknpoly p" |
2086 |
| "isweaknpoly p = False" |
|
| 33154 | 2087 |
|
| 52803 | 2088 |
lemma isnpolyh_isweaknpoly: "isnpolyh p n0 \<Longrightarrow> isweaknpoly p" |
| 52658 | 2089 |
by (induct p arbitrary: n0) auto |
| 33154 | 2090 |
|
| 52803 | 2091 |
lemma swap_isweanpoly: "isweaknpoly p \<Longrightarrow> isweaknpoly (swap n m p)" |
| 52658 | 2092 |
by (induct p) auto |
| 33154 | 2093 |
|
2094 |
end |