author | nipkow |
Mon, 03 May 2021 19:06:33 +0200 | |
changeset 73619 | 0c8d6bec6491 |
parent 72540 | 8eabaf951e6b |
permissions | -rw-r--r-- |
62706 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
section \<open>Leftist Heap\<close> |
|
4 |
||
5 |
theory Leftist_Heap |
|
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
6 |
imports |
70450 | 7 |
"HOL-Library.Pattern_Aliases" |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
8 |
Tree2 |
68492 | 9 |
Priority_Queue_Specs |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
10 |
Complex_Main |
62706 | 11 |
begin |
12 |
||
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
13 |
fun mset_tree :: "('a*'b) tree \<Rightarrow> 'a multiset" where |
64968 | 14 |
"mset_tree Leaf = {#}" | |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
15 |
"mset_tree (Node l (a, _) r) = {#a#} + mset_tree l + mset_tree r" |
64968 | 16 |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
17 |
type_synonym 'a lheap = "('a*nat)tree" |
62706 | 18 |
|
72540 | 19 |
fun mht :: "'a lheap \<Rightarrow> nat" where |
20 |
"mht Leaf = 0" | |
|
21 |
"mht (Node _ (_, n) _) = n" |
|
62706 | 22 |
|
67406 | 23 |
text\<open>The invariants:\<close> |
64968 | 24 |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
25 |
fun (in linorder) heap :: "('a*'b) tree \<Rightarrow> bool" where |
64968 | 26 |
"heap Leaf = True" | |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
27 |
"heap (Node l (m, _) r) = |
72540 | 28 |
((\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x) \<and> heap l \<and> heap r)" |
62706 | 29 |
|
64973 | 30 |
fun ltree :: "'a lheap \<Rightarrow> bool" where |
31 |
"ltree Leaf = True" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
32 |
"ltree (Node l (a, n) r) = |
72540 | 33 |
(min_height l \<ge> min_height r \<and> n = min_height r + 1 \<and> ltree l & ltree r)" |
62706 | 34 |
|
70585 | 35 |
definition empty :: "'a lheap" where |
36 |
"empty = Leaf" |
|
37 |
||
62706 | 38 |
definition node :: "'a lheap \<Rightarrow> 'a \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where |
39 |
"node l a r = |
|
73619 | 40 |
(let mhl = mht l; mhr = mht r |
41 |
in if mhl \<ge> mhr then Node l (a,mhr+1) r else Node r (a,mhl+1) l)" |
|
62706 | 42 |
|
43 |
fun get_min :: "'a lheap \<Rightarrow> 'a" where |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
44 |
"get_min(Node l (a, n) r) = a" |
62706 | 45 |
|
66499 | 46 |
text \<open>For function \<open>merge\<close>:\<close> |
47 |
unbundle pattern_aliases |
|
66491 | 48 |
|
66499 | 49 |
fun merge :: "'a::ord lheap \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where |
70585 | 50 |
"merge Leaf t = t" | |
51 |
"merge t Leaf = t" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
52 |
"merge (Node l1 (a1, n1) r1 =: t1) (Node l2 (a2, n2) r2 =: t2) = |
66491 | 53 |
(if a1 \<le> a2 then node l1 a1 (merge r1 t2) |
68600 | 54 |
else node l2 a2 (merge t1 r2))" |
62706 | 55 |
|
70585 | 56 |
text \<open>Termination of @{const merge}: by sum or lexicographic product of the sizes |
57 |
of the two arguments. Isabelle uses a lexicographic product.\<close> |
|
58 |
||
64976 | 59 |
lemma merge_code: "merge t1 t2 = (case (t1,t2) of |
62706 | 60 |
(Leaf, _) \<Rightarrow> t2 | |
61 |
(_, Leaf) \<Rightarrow> t1 | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
62 |
(Node l1 (a1, n1) r1, Node l2 (a2, n2) r2) \<Rightarrow> |
68600 | 63 |
if a1 \<le> a2 then node l1 a1 (merge r1 t2) else node l2 a2 (merge t1 r2))" |
64976 | 64 |
by(induction t1 t2 rule: merge.induct) (simp_all split: tree.split) |
62706 | 65 |
|
66522 | 66 |
hide_const (open) insert |
67 |
||
62706 | 68 |
definition insert :: "'a::ord \<Rightarrow> 'a lheap \<Rightarrow> 'a lheap" where |
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
69 |
"insert x t = merge (Node Leaf (x,1) Leaf) t" |
62706 | 70 |
|
68021 | 71 |
fun del_min :: "'a::ord lheap \<Rightarrow> 'a lheap" where |
72 |
"del_min Leaf = Leaf" | |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
73 |
"del_min (Node l _ r) = merge l r" |
62706 | 74 |
|
75 |
||
76 |
subsection "Lemmas" |
|
77 |
||
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
78 |
lemma mset_tree_empty: "mset_tree t = {#} \<longleftrightarrow> t = Leaf" |
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
79 |
by(cases t) auto |
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
80 |
|
72540 | 81 |
lemma mht_eq_min_height: "ltree t \<Longrightarrow> mht t = min_height t" |
62706 | 82 |
by(cases t) auto |
83 |
||
64973 | 84 |
lemma ltree_node: "ltree (node l a r) \<longleftrightarrow> ltree l \<and> ltree r" |
72540 | 85 |
by(auto simp add: node_def mht_eq_min_height) |
62706 | 86 |
|
64968 | 87 |
lemma heap_node: "heap (node l a r) \<longleftrightarrow> |
70585 | 88 |
heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. a \<le> x)" |
64968 | 89 |
by(auto simp add: node_def) |
90 |
||
70585 | 91 |
lemma set_tree_mset: "set_tree t = set_mset(mset_tree t)" |
92 |
by(induction t) auto |
|
62706 | 93 |
|
94 |
subsection "Functional Correctness" |
|
95 |
||
72282 | 96 |
lemma mset_merge: "mset_tree (merge t1 t2) = mset_tree t1 + mset_tree t2" |
97 |
by (induction t1 t2 rule: merge.induct) (auto simp add: node_def ac_simps) |
|
62706 | 98 |
|
64968 | 99 |
lemma mset_insert: "mset_tree (insert x t) = mset_tree t + {#x#}" |
64976 | 100 |
by (auto simp add: insert_def mset_merge) |
62706 | 101 |
|
72282 | 102 |
lemma get_min: "\<lbrakk> heap t; t \<noteq> Leaf \<rbrakk> \<Longrightarrow> get_min t = Min(set_tree t)" |
103 |
by (cases t) (auto simp add: eq_Min_iff) |
|
64968 | 104 |
|
72282 | 105 |
lemma mset_del_min: "mset_tree (del_min t) = mset_tree t - {# get_min t #}" |
106 |
by (cases t) (auto simp: mset_merge) |
|
62706 | 107 |
|
64976 | 108 |
lemma ltree_merge: "\<lbrakk> ltree l; ltree r \<rbrakk> \<Longrightarrow> ltree (merge l r)" |
72282 | 109 |
by(induction l r rule: merge.induct)(auto simp: ltree_node) |
62706 | 110 |
|
64976 | 111 |
lemma heap_merge: "\<lbrakk> heap l; heap r \<rbrakk> \<Longrightarrow> heap (merge l r)" |
112 |
proof(induction l r rule: merge.induct) |
|
70585 | 113 |
case 3 thus ?case by(auto simp: heap_node mset_merge ball_Un set_tree_mset) |
64968 | 114 |
qed simp_all |
115 |
||
64973 | 116 |
lemma ltree_insert: "ltree t \<Longrightarrow> ltree(insert x t)" |
64976 | 117 |
by(simp add: insert_def ltree_merge del: merge.simps split: tree.split) |
62706 | 118 |
|
64968 | 119 |
lemma heap_insert: "heap t \<Longrightarrow> heap(insert x t)" |
64976 | 120 |
by(simp add: insert_def heap_merge del: merge.simps split: tree.split) |
64968 | 121 |
|
68021 | 122 |
lemma ltree_del_min: "ltree t \<Longrightarrow> ltree(del_min t)" |
64976 | 123 |
by(cases t)(auto simp add: ltree_merge simp del: merge.simps) |
62706 | 124 |
|
68021 | 125 |
lemma heap_del_min: "heap t \<Longrightarrow> heap(del_min t)" |
64976 | 126 |
by(cases t)(auto simp add: heap_merge simp del: merge.simps) |
64968 | 127 |
|
66565 | 128 |
text \<open>Last step of functional correctness proof: combine all the above lemmas |
129 |
to show that leftist heaps satisfy the specification of priority queues with merge.\<close> |
|
62706 | 130 |
|
66565 | 131 |
interpretation lheap: Priority_Queue_Merge |
72282 | 132 |
where empty = empty and is_empty = "\<lambda>t. t = Leaf" |
68021 | 133 |
and insert = insert and del_min = del_min |
66565 | 134 |
and get_min = get_min and merge = merge |
72282 | 135 |
and invar = "\<lambda>t. heap t \<and> ltree t" and mset = mset_tree |
62706 | 136 |
proof(standard, goal_cases) |
70585 | 137 |
case 1 show ?case by (simp add: empty_def) |
62706 | 138 |
next |
64975 | 139 |
case (2 q) show ?case by (cases q) auto |
62706 | 140 |
next |
64975 | 141 |
case 3 show ?case by(rule mset_insert) |
142 |
next |
|
68021 | 143 |
case 4 show ?case by(rule mset_del_min) |
62706 | 144 |
next |
70585 | 145 |
case 5 thus ?case by(simp add: get_min mset_tree_empty set_tree_mset) |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
146 |
next |
70585 | 147 |
case 6 thus ?case by(simp add: empty_def) |
62706 | 148 |
next |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
149 |
case 7 thus ?case by(simp add: heap_insert ltree_insert) |
64968 | 150 |
next |
68021 | 151 |
case 8 thus ?case by(simp add: heap_del_min ltree_del_min) |
66565 | 152 |
next |
153 |
case 9 thus ?case by (simp add: mset_merge) |
|
154 |
next |
|
155 |
case 10 thus ?case by (simp add: heap_merge ltree_merge) |
|
62706 | 156 |
qed |
157 |
||
158 |
||
159 |
subsection "Complexity" |
|
160 |
||
66491 | 161 |
text\<open>Explicit termination argument: sum of sizes\<close> |
162 |
||
72540 | 163 |
fun T_merge :: "'a::ord lheap \<Rightarrow> 'a lheap \<Rightarrow> nat" where |
164 |
"T_merge Leaf t = 1" | |
|
165 |
"T_merge t Leaf = 1" | |
|
166 |
"T_merge (Node l1 (a1, n1) r1 =: t1) (Node l2 (a2, n2) r2 =: t2) = |
|
167 |
(if a1 \<le> a2 then T_merge r1 t2 |
|
168 |
else T_merge t1 r2) + 1" |
|
62706 | 169 |
|
72540 | 170 |
definition T_insert :: "'a::ord \<Rightarrow> 'a lheap \<Rightarrow> nat" where |
171 |
"T_insert x t = T_merge (Node Leaf (x, 1) Leaf) t + 1" |
|
62706 | 172 |
|
72540 | 173 |
fun T_del_min :: "'a::ord lheap \<Rightarrow> nat" where |
174 |
"T_del_min Leaf = 1" | |
|
175 |
"T_del_min (Node l _ r) = T_merge l r + 1" |
|
62706 | 176 |
|
72540 | 177 |
lemma T_merge_min_height: "ltree l \<Longrightarrow> ltree r \<Longrightarrow> T_merge l r \<le> min_height l + min_height r + 1" |
64976 | 178 |
proof(induction l r rule: merge.induct) |
72540 | 179 |
case 3 thus ?case by(auto) |
62706 | 180 |
qed simp_all |
181 |
||
72540 | 182 |
corollary T_merge_log: assumes "ltree l" "ltree r" |
183 |
shows "T_merge l r \<le> log 2 (size1 l) + log 2 (size1 r) + 1" |
|
184 |
using le_log2_of_power[OF min_height_size1[of l]] |
|
185 |
le_log2_of_power[OF min_height_size1[of r]] T_merge_min_height[of l r] assms |
|
62706 | 186 |
by linarith |
187 |
||
72540 | 188 |
corollary T_insert_log: "ltree t \<Longrightarrow> T_insert x t \<le> log 2 (size1 t) + 3" |
189 |
using T_merge_log[of "Node Leaf (x, 1) Leaf" t] |
|
190 |
by(simp add: T_insert_def split: tree.split) |
|
62706 | 191 |
|
66491 | 192 |
(* FIXME mv ? *) |
62706 | 193 |
lemma ld_ld_1_less: |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
194 |
assumes "x > 0" "y > 0" shows "log 2 x + log 2 y + 1 < 2 * log 2 (x+y)" |
62706 | 195 |
proof - |
66419
8194ed7cf2cb
separate file for priority queue interface; extended Leftist_Heap.
nipkow
parents:
64977
diff
changeset
|
196 |
have "2 powr (log 2 x + log 2 y + 1) = 2*x*y" |
64977 | 197 |
using assms by(simp add: powr_add) |
198 |
also have "\<dots> < (x+y)^2" using assms |
|
62706 | 199 |
by(simp add: numeral_eq_Suc algebra_simps add_pos_pos) |
64977 | 200 |
also have "\<dots> = 2 powr (2 * log 2 (x+y))" |
66491 | 201 |
using assms by(simp add: powr_add log_powr[symmetric]) |
64977 | 202 |
finally show ?thesis by simp |
62706 | 203 |
qed |
204 |
||
72540 | 205 |
corollary T_del_min_log: assumes "ltree t" |
206 |
shows "T_del_min t \<le> 2 * log 2 (size1 t) + 1" |
|
70755
3fb16bed5d6c
replaced new type ('a,'b) tree by old type ('a*'b) tree.
nipkow
parents:
70585
diff
changeset
|
207 |
proof(cases t rule: tree2_cases) |
62706 | 208 |
case Leaf thus ?thesis using assms by simp |
209 |
next |
|
72540 | 210 |
case [simp]: (Node l _ _ r) |
211 |
have "T_del_min t = T_merge l r + 1" by simp |
|
212 |
also have "\<dots> \<le> log 2 (size1 l) + log 2 (size1 r) + 2" |
|
213 |
using \<open>ltree t\<close> T_merge_log[of l r] by (auto simp del: T_merge.simps) |
|
62706 | 214 |
also have "\<dots> \<le> 2 * log 2 (size1 t) + 1" |
72540 | 215 |
using ld_ld_1_less[of "size1 l" "size1 r"] by (simp) |
62706 | 216 |
finally show ?thesis . |
217 |
qed |
|
218 |
||
219 |
end |