11519
|
1 |
(* Title: Pure/proofterm.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Stefan Berghofer
|
|
4 |
Copyright 2000 TU Muenchen
|
|
5 |
|
|
6 |
LF style proof terms
|
|
7 |
*)
|
|
8 |
|
|
9 |
infix 8 % %% %%%;
|
|
10 |
|
|
11 |
signature BASIC_PROOFTERM =
|
|
12 |
sig
|
|
13 |
datatype deriv_kind = MinDeriv | ThmDeriv | FullDeriv;
|
|
14 |
val keep_derivs : deriv_kind ref
|
|
15 |
|
|
16 |
datatype proof =
|
|
17 |
PBound of int
|
|
18 |
| Abst of string * typ option * proof
|
|
19 |
| AbsP of string * term option * proof
|
|
20 |
| op %% of proof * term option
|
|
21 |
| op % of proof * proof
|
|
22 |
| Hyp of term
|
|
23 |
| PThm of (string * (string * string list) list) * proof * term * typ list option
|
|
24 |
| PAxm of string * term * typ list option
|
|
25 |
| Oracle of string * term * typ list option
|
|
26 |
| MinProof of proof list;
|
|
27 |
|
|
28 |
val %%% : proof * term -> proof
|
|
29 |
end;
|
|
30 |
|
|
31 |
signature PROOFTERM =
|
|
32 |
sig
|
|
33 |
include BASIC_PROOFTERM
|
|
34 |
|
|
35 |
val infer_derivs : (proof -> proof -> proof) -> bool * proof -> bool * proof -> bool * proof
|
|
36 |
val infer_derivs' : (proof -> proof) -> (bool * proof -> bool * proof)
|
|
37 |
|
|
38 |
(** primitive operations **)
|
|
39 |
val proof_combt : proof * term list -> proof
|
|
40 |
val proof_combt' : proof * term option list -> proof
|
|
41 |
val proof_combP : proof * proof list -> proof
|
|
42 |
val strip_combt : proof -> proof * term option list
|
|
43 |
val strip_combP : proof -> proof * proof list
|
|
44 |
val strip_thm : proof -> proof
|
|
45 |
val map_proof_terms : (term -> term) -> (typ -> typ) -> proof -> proof
|
|
46 |
val fold_proof_terms : (term * 'a -> 'a) -> (typ * 'a -> 'a) -> 'a * proof -> 'a
|
|
47 |
val add_prf_names : string list * proof -> string list
|
|
48 |
val add_prf_tfree_names : string list * proof -> string list
|
|
49 |
val add_prf_tvar_ixns : indexname list * proof -> indexname list
|
|
50 |
val prf_abstract_over : term -> proof -> proof
|
|
51 |
val prf_incr_bv : int -> int -> int -> int -> proof -> proof
|
|
52 |
val incr_pboundvars : int -> int -> proof -> proof
|
|
53 |
val prf_loose_bvar1 : proof -> int -> bool
|
|
54 |
val prf_loose_Pbvar1 : proof -> int -> bool
|
|
55 |
val norm_proof : Envir.env -> proof -> proof
|
|
56 |
val norm_proof' : Envir.env -> proof -> proof
|
|
57 |
val prf_subst_bounds : term list -> proof -> proof
|
|
58 |
val prf_subst_pbounds : proof list -> proof -> proof
|
|
59 |
val freeze_thaw_prf : proof -> proof * (proof -> proof)
|
|
60 |
|
|
61 |
val thms_of_proof : (term * proof) list Symtab.table -> proof ->
|
|
62 |
(term * proof) list Symtab.table
|
|
63 |
val axms_of_proof : proof Symtab.table -> proof -> proof Symtab.table
|
|
64 |
val oracles_of_proof : proof list -> proof -> proof list
|
|
65 |
|
|
66 |
(** proof terms for specific inference rules **)
|
|
67 |
val implies_intr_proof : term -> proof -> proof
|
|
68 |
val forall_intr_proof : term -> string -> proof -> proof
|
|
69 |
val varify_proof : term -> string list -> proof -> proof
|
|
70 |
val freezeT : term -> proof -> proof
|
|
71 |
val rotate_proof : term list -> term -> int -> proof -> proof
|
|
72 |
val permute_prems_prf : term list -> int -> int -> proof -> proof
|
|
73 |
val instantiate : (indexname * typ) list -> (term * term) list -> proof -> proof
|
|
74 |
val lift_proof : term -> int -> term -> proof -> proof
|
|
75 |
val assumption_proof : term list -> term -> int -> proof -> proof
|
|
76 |
val bicompose_proof : term list -> term list -> term list -> term option ->
|
|
77 |
int -> proof -> proof -> proof
|
|
78 |
val equality_axms : (string * term) list
|
|
79 |
val reflexive_axm : proof
|
|
80 |
val symmetric_axm : proof
|
|
81 |
val transitive_axm : proof
|
|
82 |
val equal_intr_axm : proof
|
|
83 |
val equal_elim_axm : proof
|
|
84 |
val abstract_rule_axm : proof
|
|
85 |
val combination_axm : proof
|
|
86 |
val reflexive : proof
|
|
87 |
val symmetric : proof -> proof
|
|
88 |
val transitive : term -> typ -> proof -> proof -> proof
|
|
89 |
val abstract_rule : term -> string -> proof -> proof
|
|
90 |
val combination : term -> term -> term -> term -> typ -> proof -> proof -> proof
|
|
91 |
val equal_intr : term -> term -> proof -> proof -> proof
|
|
92 |
val equal_elim : term -> term -> proof -> proof -> proof
|
|
93 |
val axm_proof : string -> term -> proof
|
|
94 |
val oracle_proof : string -> term -> proof
|
|
95 |
val thm_proof : Sign.sg -> string * (string * string list) list ->
|
|
96 |
term list -> term -> proof -> proof
|
|
97 |
val get_name_tags : term -> proof -> string * (string * string list) list
|
|
98 |
|
|
99 |
(** rewriting on proof terms **)
|
|
100 |
val add_prf_rrules : theory -> (proof * proof) list -> unit
|
|
101 |
val add_prf_rprocs : theory ->
|
|
102 |
(string * (Term.typ list -> proof -> proof option)) list -> unit
|
|
103 |
val rewrite_proof : Type.type_sig -> (proof * proof) list *
|
|
104 |
(string * (typ list -> proof -> proof option)) list -> proof -> proof
|
|
105 |
val init : theory -> theory
|
|
106 |
|
|
107 |
end
|
|
108 |
|
|
109 |
structure Proofterm : PROOFTERM =
|
|
110 |
struct
|
|
111 |
|
|
112 |
datatype proof =
|
|
113 |
PBound of int
|
|
114 |
| Abst of string * typ option * proof
|
|
115 |
| AbsP of string * term option * proof
|
|
116 |
| op %% of proof * term option
|
|
117 |
| op % of proof * proof
|
|
118 |
| Hyp of term
|
|
119 |
| PThm of (string * (string * string list) list) * proof * term * typ list option
|
|
120 |
| PAxm of string * term * typ list option
|
|
121 |
| Oracle of string * term * typ list option
|
|
122 |
| MinProof of proof list;
|
|
123 |
|
|
124 |
fun oracles_of_proof prfs prf =
|
|
125 |
let
|
|
126 |
fun oras_of (tabs, Abst (_, _, prf)) = oras_of (tabs, prf)
|
|
127 |
| oras_of (tabs, AbsP (_, _, prf)) = oras_of (tabs, prf)
|
|
128 |
| oras_of (tabs, prf %% _) = oras_of (tabs, prf)
|
|
129 |
| oras_of (tabs, prf1 % prf2) = oras_of (oras_of (tabs, prf1), prf2)
|
|
130 |
| oras_of (tabs as (thms, oras), PThm ((name, _), prf, prop, _)) =
|
|
131 |
(case Symtab.lookup (thms, name) of
|
|
132 |
None => oras_of ((Symtab.update ((name, [prop]), thms), oras), prf)
|
|
133 |
| Some ps => if prop mem ps then tabs else
|
|
134 |
oras_of ((Symtab.update ((name, prop::ps), thms), oras), prf))
|
|
135 |
| oras_of ((thms, oras), prf as Oracle _) = (thms, prf ins oras)
|
|
136 |
| oras_of (tabs, MinProof prfs) = foldl oras_of (tabs, prfs)
|
|
137 |
| oras_of (tabs, _) = tabs
|
|
138 |
in
|
|
139 |
snd (oras_of ((Symtab.empty, prfs), prf))
|
|
140 |
end;
|
|
141 |
|
|
142 |
fun thms_of_proof tab (Abst (_, _, prf)) = thms_of_proof tab prf
|
|
143 |
| thms_of_proof tab (AbsP (_, _, prf)) = thms_of_proof tab prf
|
|
144 |
| thms_of_proof tab (prf1 % prf2) = thms_of_proof (thms_of_proof tab prf1) prf2
|
|
145 |
| thms_of_proof tab (prf %% _) = thms_of_proof tab prf
|
|
146 |
| thms_of_proof tab (prf' as PThm ((s, _), prf, prop, _)) =
|
|
147 |
(case Symtab.lookup (tab, s) of
|
|
148 |
None => thms_of_proof (Symtab.update ((s, [(prop, prf')]), tab)) prf
|
|
149 |
| Some ps => if exists (equal prop o fst) ps then tab else
|
|
150 |
thms_of_proof (Symtab.update ((s, (prop, prf')::ps), tab)) prf)
|
|
151 |
| thms_of_proof tab _ = tab;
|
|
152 |
|
|
153 |
fun axms_of_proof tab (Abst (_, _, prf)) = axms_of_proof tab prf
|
|
154 |
| axms_of_proof tab (AbsP (_, _, prf)) = axms_of_proof tab prf
|
|
155 |
| axms_of_proof tab (prf1 % prf2) = axms_of_proof (axms_of_proof tab prf1) prf2
|
|
156 |
| axms_of_proof tab (prf %% _) = axms_of_proof tab prf
|
|
157 |
| axms_of_proof tab (prf as PAxm (s, _, _)) = Symtab.update ((s, prf), tab)
|
|
158 |
| axms_of_proof tab _ = tab;
|
|
159 |
|
|
160 |
(** collect all theorems, axioms and oracles **)
|
|
161 |
|
|
162 |
fun mk_min_proof (prfs, Abst (_, _, prf)) = mk_min_proof (prfs, prf)
|
|
163 |
| mk_min_proof (prfs, AbsP (_, _, prf)) = mk_min_proof (prfs, prf)
|
|
164 |
| mk_min_proof (prfs, prf %% _) = mk_min_proof (prfs, prf)
|
|
165 |
| mk_min_proof (prfs, prf1 % prf2) = mk_min_proof (mk_min_proof (prfs, prf1), prf2)
|
|
166 |
| mk_min_proof (prfs, prf as PThm _) = prf ins prfs
|
|
167 |
| mk_min_proof (prfs, prf as PAxm _) = prf ins prfs
|
|
168 |
| mk_min_proof (prfs, prf as Oracle _) = prf ins prfs
|
|
169 |
| mk_min_proof (prfs, MinProof prfs') = prfs union prfs'
|
|
170 |
| mk_min_proof (prfs, _) = prfs;
|
|
171 |
|
|
172 |
(** proof objects with different levels of detail **)
|
|
173 |
|
|
174 |
datatype deriv_kind = MinDeriv | ThmDeriv | FullDeriv;
|
|
175 |
|
|
176 |
val keep_derivs = ref FullDeriv;
|
|
177 |
|
|
178 |
fun if_ora b = if b then oracles_of_proof else K;
|
|
179 |
|
|
180 |
fun infer_derivs f (ora1, prf1) (ora2, prf2) =
|
|
181 |
(ora1 orelse ora2,
|
|
182 |
case !keep_derivs of
|
|
183 |
FullDeriv => f prf1 prf2
|
|
184 |
| ThmDeriv => MinProof (mk_min_proof (mk_min_proof ([], prf1), prf2))
|
|
185 |
| MinDeriv => MinProof (if_ora ora2 (if_ora ora1 [] prf1) prf2));
|
|
186 |
|
|
187 |
fun infer_derivs' f (ora, prf) =
|
|
188 |
(ora,
|
|
189 |
case !keep_derivs of
|
|
190 |
FullDeriv => f prf
|
|
191 |
| ThmDeriv => MinProof (mk_min_proof ([], prf))
|
|
192 |
| MinDeriv => MinProof (if_ora ora [] prf));
|
|
193 |
|
|
194 |
fun (prf %%% t) = prf %% Some t;
|
|
195 |
|
|
196 |
val proof_combt = foldl (op %%%);
|
|
197 |
val proof_combt' = foldl (op %%);
|
|
198 |
val proof_combP = foldl (op %);
|
|
199 |
|
|
200 |
fun strip_combt prf =
|
|
201 |
let fun stripc (prf %% t, ts) = stripc (prf, t::ts)
|
|
202 |
| stripc x = x
|
|
203 |
in stripc (prf, []) end;
|
|
204 |
|
|
205 |
fun strip_combP prf =
|
|
206 |
let fun stripc (prf % prf', prfs) = stripc (prf, prf'::prfs)
|
|
207 |
| stripc x = x
|
|
208 |
in stripc (prf, []) end;
|
|
209 |
|
|
210 |
fun strip_thm prf = (case strip_combt (fst (strip_combP prf)) of
|
|
211 |
(PThm (_, prf', _, _), _) => prf'
|
|
212 |
| _ => prf);
|
|
213 |
|
|
214 |
val mk_Abst = foldr (fn ((s, T:typ), prf) => Abst (s, None, prf));
|
|
215 |
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", None, prf)) prf;
|
|
216 |
|
|
217 |
fun map_proof_terms f g (Abst (s, T, prf)) = Abst (s, apsome g T, map_proof_terms f g prf)
|
|
218 |
| map_proof_terms f g (AbsP (s, t, prf)) = AbsP (s, apsome f t, map_proof_terms f g prf)
|
|
219 |
| map_proof_terms f g (prf %% t) = map_proof_terms f g prf %% apsome f t
|
|
220 |
| map_proof_terms f g (prf1 % prf2) = map_proof_terms f g prf1 % map_proof_terms f g prf2
|
|
221 |
| map_proof_terms _ g (PThm (a, prf, prop, Some Ts)) = PThm (a, prf, prop, Some (map g Ts))
|
|
222 |
| map_proof_terms _ g (PAxm (a, prop, Some Ts)) = PAxm (a, prop, Some (map g Ts))
|
|
223 |
| map_proof_terms _ _ prf = prf;
|
|
224 |
|
|
225 |
fun fold_proof_terms f g (a, Abst (_, Some T, prf)) = fold_proof_terms f g (g (T, a), prf)
|
|
226 |
| fold_proof_terms f g (a, Abst (_, None, prf)) = fold_proof_terms f g (a, prf)
|
|
227 |
| fold_proof_terms f g (a, AbsP (_, Some t, prf)) = fold_proof_terms f g (f (t, a), prf)
|
|
228 |
| fold_proof_terms f g (a, AbsP (_, None, prf)) = fold_proof_terms f g (a, prf)
|
|
229 |
| fold_proof_terms f g (a, prf %% Some t) = f (t, fold_proof_terms f g (a, prf))
|
|
230 |
| fold_proof_terms f g (a, prf %% None) = fold_proof_terms f g (a, prf)
|
|
231 |
| fold_proof_terms f g (a, prf1 % prf2) = fold_proof_terms f g
|
|
232 |
(fold_proof_terms f g (a, prf1), prf2)
|
|
233 |
| fold_proof_terms _ g (a, PThm (_, _, _, Some Ts)) = foldr g (Ts, a)
|
|
234 |
| fold_proof_terms _ g (a, PAxm (_, prop, Some Ts)) = foldr g (Ts, a)
|
|
235 |
| fold_proof_terms _ _ (a, _) = a;
|
|
236 |
|
|
237 |
val add_prf_names = fold_proof_terms add_term_names ((uncurry K) o swap);
|
|
238 |
val add_prf_tfree_names = fold_proof_terms add_term_tfree_names add_typ_tfree_names;
|
|
239 |
val add_prf_tvar_ixns = fold_proof_terms add_term_tvar_ixns (add_typ_ixns o swap);
|
|
240 |
|
|
241 |
|
|
242 |
(***** utilities *****)
|
|
243 |
|
|
244 |
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
|
|
245 |
| strip_abs _ t = t;
|
|
246 |
|
|
247 |
fun mk_abs Ts t = foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
|
|
248 |
|
|
249 |
|
|
250 |
(*Abstraction of a proof term over its occurrences of v,
|
|
251 |
which must contain no loose bound variables.
|
|
252 |
The resulting proof term is ready to become the body of an Abst.*)
|
|
253 |
|
|
254 |
fun prf_abstract_over v =
|
|
255 |
let
|
|
256 |
fun abst' Ts t = strip_abs Ts (abstract_over (v, mk_abs Ts t));
|
|
257 |
|
|
258 |
fun abst Ts (AbsP (a, t, prf)) = AbsP (a, apsome (abst' Ts) t, abst Ts prf)
|
|
259 |
| abst Ts (Abst (a, T, prf)) = Abst (a, T, abst (dummyT::Ts) prf)
|
|
260 |
| abst Ts (prf1 % prf2) = abst Ts prf1 % abst Ts prf2
|
|
261 |
| abst Ts (prf %% t) = abst Ts prf %% apsome (abst' Ts) t
|
|
262 |
| abst _ prf = prf
|
|
263 |
|
|
264 |
in abst [] end;
|
|
265 |
|
|
266 |
|
|
267 |
(*increments a proof term's non-local bound variables
|
|
268 |
required when moving a proof term within abstractions
|
|
269 |
inc is increment for bound variables
|
|
270 |
lev is level at which a bound variable is considered 'loose'*)
|
|
271 |
|
|
272 |
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
|
|
273 |
|
|
274 |
fun prf_incr_bv incP inct Plev tlev (u as PBound i) = if i>=Plev then PBound(i+incP) else u
|
|
275 |
| prf_incr_bv incP inct Plev tlev (AbsP (a, t, body)) =
|
|
276 |
AbsP (a, apsome (incr_bv' inct tlev) t, prf_incr_bv incP inct (Plev+1) tlev body)
|
|
277 |
| prf_incr_bv incP inct Plev tlev (Abst (a, T, body)) =
|
|
278 |
Abst (a, T, prf_incr_bv incP inct Plev (tlev+1) body)
|
|
279 |
| prf_incr_bv incP inct Plev tlev (prf % prf') =
|
|
280 |
prf_incr_bv incP inct Plev tlev prf % prf_incr_bv incP inct Plev tlev prf'
|
|
281 |
| prf_incr_bv incP inct Plev tlev (prf %% t) =
|
|
282 |
prf_incr_bv incP inct Plev tlev prf %% apsome (incr_bv' inct tlev) t
|
|
283 |
| prf_incr_bv _ _ _ _ prf = prf;
|
|
284 |
|
|
285 |
fun incr_pboundvars 0 0 prf = prf
|
|
286 |
| incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
|
|
287 |
|
|
288 |
|
|
289 |
fun prf_loose_bvar1 (prf1 % prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
|
|
290 |
| prf_loose_bvar1 (prf %% Some t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
|
|
291 |
| prf_loose_bvar1 (_ %% None) _ = true
|
|
292 |
| prf_loose_bvar1 (AbsP (_, Some t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
|
|
293 |
| prf_loose_bvar1 (AbsP (_, None, _)) k = true
|
|
294 |
| prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
|
|
295 |
| prf_loose_bvar1 _ _ = false;
|
|
296 |
|
|
297 |
fun prf_loose_Pbvar1 (PBound i) k = i = k
|
|
298 |
| prf_loose_Pbvar1 (prf1 % prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
|
|
299 |
| prf_loose_Pbvar1 (prf %% _) k = prf_loose_Pbvar1 prf k
|
|
300 |
| prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
|
|
301 |
| prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
|
|
302 |
| prf_loose_Pbvar1 _ _ = false;
|
|
303 |
|
|
304 |
|
|
305 |
(**** substitutions ****)
|
|
306 |
|
|
307 |
local open Envir in
|
|
308 |
|
|
309 |
fun apsome' f None = raise SAME
|
|
310 |
| apsome' f (Some x) = Some (f x);
|
|
311 |
|
|
312 |
fun norm_proof env =
|
|
313 |
let
|
|
314 |
fun norm (Abst (s, T, prf)) = (Abst (s, apsome' (norm_type_same env) T, normh prf)
|
|
315 |
handle SAME => Abst (s, T, norm prf))
|
|
316 |
| norm (AbsP (s, t, prf)) = (AbsP (s, apsome' (norm_term_same env) t, normh prf)
|
|
317 |
handle SAME => AbsP (s, t, norm prf))
|
|
318 |
| norm (prf %% t) = (norm prf %% apsome (norm_term env) t
|
|
319 |
handle SAME => prf %% apsome' (norm_term_same env) t)
|
|
320 |
| norm (prf1 % prf2) = (norm prf1 % normh prf2
|
|
321 |
handle SAME => prf1 % norm prf2)
|
|
322 |
| norm (PThm (s, prf, t, Ts)) = PThm (s, prf, t, apsome' (norm_types_same env) Ts)
|
|
323 |
| norm (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome' (norm_types_same env) Ts)
|
|
324 |
| norm _ = raise SAME
|
|
325 |
and normh prf = (norm prf handle SAME => prf);
|
|
326 |
in normh end;
|
|
327 |
|
|
328 |
(***** Remove some types in proof term (to save space) *****)
|
|
329 |
|
|
330 |
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
|
|
331 |
| remove_types (t $ u) = remove_types t $ remove_types u
|
|
332 |
| remove_types (Const (s, _)) = Const (s, dummyT)
|
|
333 |
| remove_types t = t;
|
|
334 |
|
|
335 |
fun remove_types_env (Envir.Envir {iTs, asol, maxidx}) =
|
|
336 |
Envir.Envir {iTs = iTs, asol = Vartab.map remove_types asol, maxidx = maxidx};
|
|
337 |
|
|
338 |
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
|
|
339 |
|
|
340 |
(**** substitution of bound variables ****)
|
|
341 |
|
|
342 |
fun prf_subst_bounds args prf =
|
|
343 |
let
|
|
344 |
val n = length args;
|
|
345 |
fun subst' lev (Bound i) =
|
|
346 |
(if i<lev then raise SAME (*var is locally bound*)
|
|
347 |
else incr_boundvars lev (List.nth (args, i-lev))
|
|
348 |
handle Subscript => Bound (i-n) (*loose: change it*))
|
|
349 |
| subst' lev (Abs (a, T, body)) = Abs (a, T, subst' (lev+1) body)
|
|
350 |
| subst' lev (f $ t) = (subst' lev f $ substh' lev t
|
|
351 |
handle SAME => f $ subst' lev t)
|
|
352 |
| subst' _ _ = raise SAME
|
|
353 |
and substh' lev t = (subst' lev t handle SAME => t);
|
|
354 |
|
|
355 |
fun subst lev (AbsP (a, t, body)) = (AbsP (a, apsome' (subst' lev) t, substh lev body)
|
|
356 |
handle SAME => AbsP (a, t, subst lev body))
|
|
357 |
| subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
|
|
358 |
| subst lev (prf % prf') = (subst lev prf % substh lev prf'
|
|
359 |
handle SAME => prf % subst lev prf')
|
|
360 |
| subst lev (prf %% t) = (subst lev prf %% apsome (substh' lev) t
|
|
361 |
handle SAME => prf %% apsome' (subst' lev) t)
|
|
362 |
| subst _ _ = raise SAME
|
|
363 |
and substh lev prf = (subst lev prf handle SAME => prf)
|
|
364 |
in case args of [] => prf | _ => substh 0 prf end;
|
|
365 |
|
|
366 |
fun prf_subst_pbounds args prf =
|
|
367 |
let
|
|
368 |
val n = length args;
|
|
369 |
fun subst (PBound i) Plev tlev =
|
|
370 |
(if i < Plev then raise SAME (*var is locally bound*)
|
|
371 |
else incr_pboundvars Plev tlev (List.nth (args, i-Plev))
|
|
372 |
handle Subscript => PBound (i-n) (*loose: change it*))
|
|
373 |
| subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
|
|
374 |
| subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
|
|
375 |
| subst (prf % prf') Plev tlev = (subst prf Plev tlev % substh prf' Plev tlev
|
|
376 |
handle SAME => prf % subst prf' Plev tlev)
|
|
377 |
| subst (prf %% t) Plev tlev = subst prf Plev tlev %% t
|
|
378 |
| subst prf _ _ = raise SAME
|
|
379 |
and substh prf Plev tlev = (subst prf Plev tlev handle SAME => prf)
|
|
380 |
in case args of [] => prf | _ => substh prf 0 0 end;
|
|
381 |
|
|
382 |
end;
|
|
383 |
|
|
384 |
|
|
385 |
(**** Freezing and thawing of variables in proof terms ****)
|
|
386 |
|
|
387 |
fun frzT names =
|
|
388 |
map_type_tvar (fn (ixn, xs) => TFree (the (assoc (names, ixn)), xs));
|
|
389 |
|
|
390 |
fun thawT names =
|
|
391 |
map_type_tfree (fn (s, xs) => case assoc (names, s) of
|
|
392 |
None => TFree (s, xs)
|
|
393 |
| Some ixn => TVar (ixn, xs));
|
|
394 |
|
|
395 |
fun freeze names names' (t $ u) =
|
|
396 |
freeze names names' t $ freeze names names' u
|
|
397 |
| freeze names names' (Abs (s, T, t)) =
|
|
398 |
Abs (s, frzT names' T, freeze names names' t)
|
|
399 |
| freeze names names' (Const (s, T)) = Const (s, frzT names' T)
|
|
400 |
| freeze names names' (Free (s, T)) = Free (s, frzT names' T)
|
|
401 |
| freeze names names' (Var (ixn, T)) =
|
|
402 |
Free (the (assoc (names, ixn)), frzT names' T)
|
|
403 |
| freeze names names' t = t;
|
|
404 |
|
|
405 |
fun thaw names names' (t $ u) =
|
|
406 |
thaw names names' t $ thaw names names' u
|
|
407 |
| thaw names names' (Abs (s, T, t)) =
|
|
408 |
Abs (s, thawT names' T, thaw names names' t)
|
|
409 |
| thaw names names' (Const (s, T)) = Const (s, thawT names' T)
|
|
410 |
| thaw names names' (Free (s, T)) =
|
|
411 |
let val T' = thawT names' T
|
|
412 |
in case assoc (names, s) of
|
|
413 |
None => Free (s, T')
|
|
414 |
| Some ixn => Var (ixn, T')
|
|
415 |
end
|
|
416 |
| thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
|
|
417 |
| thaw names names' t = t;
|
|
418 |
|
|
419 |
fun freeze_thaw_prf prf =
|
|
420 |
let
|
|
421 |
val (fs, Tfs, vs, Tvs) = fold_proof_terms
|
|
422 |
(fn (t, (fs, Tfs, vs, Tvs)) =>
|
|
423 |
(add_term_frees (t, fs), add_term_tfree_names (t, Tfs),
|
|
424 |
add_term_vars (t, vs), add_term_tvar_ixns (t, Tvs)))
|
|
425 |
(fn (T, (fs, Tfs, vs, Tvs)) =>
|
|
426 |
(fs, add_typ_tfree_names (T, Tfs),
|
|
427 |
vs, add_typ_ixns (Tvs, T)))
|
|
428 |
(([], [], [], []), prf);
|
|
429 |
val fs' = map (fst o dest_Free) fs;
|
|
430 |
val vs' = map (fst o dest_Var) vs;
|
|
431 |
val names = vs' ~~ variantlist (map fst vs', fs');
|
|
432 |
val names' = Tvs ~~ variantlist (map fst Tvs, Tfs);
|
|
433 |
val rnames = map swap names;
|
|
434 |
val rnames' = map swap names';
|
|
435 |
in
|
|
436 |
(map_proof_terms (freeze names names') (frzT names') prf,
|
|
437 |
map_proof_terms (thaw rnames rnames') (thawT rnames'))
|
|
438 |
end;
|
|
439 |
|
|
440 |
|
|
441 |
(***** implication introduction *****)
|
|
442 |
|
|
443 |
fun implies_intr_proof h prf =
|
|
444 |
let
|
|
445 |
fun abshyp i (Hyp t) = if h aconv t then PBound i else Hyp t
|
|
446 |
| abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
|
|
447 |
| abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i+1) prf)
|
|
448 |
| abshyp i (prf %% t) = abshyp i prf %% t
|
|
449 |
| abshyp i (prf1 % prf2) = abshyp i prf1 % abshyp i prf2
|
|
450 |
| abshyp _ prf = prf;
|
|
451 |
in
|
|
452 |
AbsP ("H", None (*h*), abshyp 0 prf)
|
|
453 |
end;
|
|
454 |
|
|
455 |
|
|
456 |
(***** forall introduction *****)
|
|
457 |
|
|
458 |
fun forall_intr_proof x a prf = Abst (a, None, prf_abstract_over x prf);
|
|
459 |
|
|
460 |
|
|
461 |
(***** varify *****)
|
|
462 |
|
|
463 |
fun varify_proof t fixed prf =
|
|
464 |
let
|
|
465 |
val fs = add_term_tfree_names (t, []) \\ fixed;
|
|
466 |
val ixns = add_term_tvar_ixns (t, []);
|
|
467 |
val fmap = fs ~~ variantlist (fs, map #1 ixns)
|
|
468 |
fun thaw (f as (a, S)) =
|
|
469 |
(case assoc (fmap, a) of
|
|
470 |
None => TFree f
|
|
471 |
| Some b => TVar ((b, 0), S));
|
|
472 |
in map_proof_terms (map_term_types (map_type_tfree thaw)) (map_type_tfree thaw) prf
|
|
473 |
end;
|
|
474 |
|
|
475 |
|
|
476 |
local
|
|
477 |
|
|
478 |
fun new_name (ix, (pairs,used)) =
|
|
479 |
let val v = variant used (string_of_indexname ix)
|
|
480 |
in ((ix, v) :: pairs, v :: used) end;
|
|
481 |
|
|
482 |
fun freeze_one alist (ix, sort) = (case assoc (alist, ix) of
|
|
483 |
None => TVar (ix, sort)
|
|
484 |
| Some name => TFree (name, sort));
|
|
485 |
|
|
486 |
in
|
|
487 |
|
|
488 |
fun freezeT t prf =
|
|
489 |
let
|
|
490 |
val used = it_term_types add_typ_tfree_names (t, [])
|
|
491 |
and tvars = map #1 (it_term_types add_typ_tvars (t, []));
|
|
492 |
val (alist, _) = foldr new_name (tvars, ([], used));
|
|
493 |
in
|
|
494 |
(case alist of
|
|
495 |
[] => prf (*nothing to do!*)
|
|
496 |
| _ =>
|
|
497 |
let val frzT = map_type_tvar (freeze_one alist)
|
|
498 |
in map_proof_terms (map_term_types frzT) frzT prf end)
|
|
499 |
end;
|
|
500 |
|
|
501 |
end;
|
|
502 |
|
|
503 |
|
|
504 |
(***** rotate assumptions *****)
|
|
505 |
|
|
506 |
fun rotate_proof Bs Bi m prf =
|
|
507 |
let
|
|
508 |
val params = Term.strip_all_vars Bi;
|
|
509 |
val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
|
|
510 |
val i = length asms;
|
|
511 |
val j = length Bs;
|
|
512 |
in
|
|
513 |
mk_AbsP (j+1, proof_combP (prf, map PBound
|
|
514 |
(j downto 1) @ [mk_Abst (params, mk_AbsP (i,
|
|
515 |
proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
|
|
516 |
map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
|
|
517 |
end;
|
|
518 |
|
|
519 |
|
|
520 |
(***** permute premises *****)
|
|
521 |
|
|
522 |
fun permute_prems_prf prems j k prf =
|
|
523 |
let val n = length prems
|
|
524 |
in mk_AbsP (n, proof_combP (prf,
|
|
525 |
map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
|
|
526 |
end;
|
|
527 |
|
|
528 |
|
|
529 |
(***** instantiation *****)
|
|
530 |
|
|
531 |
fun instantiate vTs tpairs =
|
|
532 |
map_proof_terms (subst_atomic (map (apsnd remove_types) tpairs) o
|
|
533 |
subst_TVars vTs) (typ_subst_TVars vTs);
|
|
534 |
|
|
535 |
|
|
536 |
(***** lifting *****)
|
|
537 |
|
|
538 |
fun lift_proof Bi inc prop prf =
|
|
539 |
let
|
|
540 |
val (_, lift_all) = Logic.lift_fns (Bi, inc);
|
|
541 |
|
|
542 |
fun lift'' Us Ts t = strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
|
|
543 |
|
|
544 |
fun lift' Us Ts (Abst (s, T, prf)) = Abst (s, apsome (incr_tvar inc) T, lift' Us (dummyT::Ts) prf)
|
|
545 |
| lift' Us Ts (AbsP (s, t, prf)) = AbsP (s, apsome (lift'' Us Ts) t, lift' Us Ts prf)
|
|
546 |
| lift' Us Ts (prf %% t) = lift' Us Ts prf %% apsome (lift'' Us Ts) t
|
|
547 |
| lift' Us Ts (prf1 % prf2) = lift' Us Ts prf1 % lift' Us Ts prf2
|
|
548 |
| lift' _ _ (PThm (s, prf, prop, Ts)) = PThm (s, prf, prop, apsome (map (incr_tvar inc)) Ts)
|
|
549 |
| lift' _ _ (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome (map (incr_tvar inc)) Ts)
|
|
550 |
| lift' _ _ prf = prf;
|
|
551 |
|
|
552 |
val ps = map lift_all (Logic.strip_imp_prems (snd (Logic.strip_flexpairs prop)));
|
|
553 |
val k = length ps;
|
|
554 |
|
|
555 |
fun mk_app (b, (i, j, prf)) =
|
|
556 |
if b then (i-1, j, prf % PBound i) else (i, j-1, prf %%% Bound j);
|
|
557 |
|
|
558 |
fun lift Us bs i j (Const ("==>", _) $ A $ B) =
|
|
559 |
AbsP ("H", None (*A*), lift Us (true::bs) (i+1) j B)
|
|
560 |
| lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) =
|
|
561 |
Abst (a, None (*T*), lift (T::Us) (false::bs) i (j+1) t)
|
|
562 |
| lift Us bs i j _ = proof_combP (lift' (rev Us) [] prf,
|
|
563 |
map (fn k => (#3 (foldr mk_app (bs, (i-1, j-1, PBound k)))))
|
|
564 |
(i + k - 1 downto i));
|
|
565 |
in
|
|
566 |
mk_AbsP (k, lift [] [] 0 0 Bi)
|
|
567 |
end;
|
|
568 |
|
|
569 |
|
|
570 |
(***** proof by assumption *****)
|
|
571 |
|
|
572 |
fun mk_asm_prf (Const ("==>", _) $ A $ B) i = AbsP ("H", None (*A*), mk_asm_prf B (i+1))
|
|
573 |
| mk_asm_prf (Const ("all", _) $ Abs (a, T, t)) i = Abst (a, None (*T*), mk_asm_prf t i)
|
|
574 |
| mk_asm_prf _ i = PBound i;
|
|
575 |
|
|
576 |
fun assumption_proof Bs Bi n prf =
|
|
577 |
mk_AbsP (length Bs, proof_combP (prf,
|
|
578 |
map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi (~n)]));
|
|
579 |
|
|
580 |
|
|
581 |
(***** Composition of object rule with proof state *****)
|
|
582 |
|
|
583 |
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
|
|
584 |
AbsP ("H", None (*A*), flatten_params_proof (i+1) j n (B, k))
|
|
585 |
| flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
|
|
586 |
Abst (a, None (*T*), flatten_params_proof i (j+1) n (t, k))
|
|
587 |
| flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
|
|
588 |
map Bound (j-1 downto 0)), map PBound (i-1 downto 0 \ i-n));
|
|
589 |
|
|
590 |
fun bicompose_proof Bs oldAs newAs A n rprf sprf =
|
|
591 |
let
|
|
592 |
val la = length newAs;
|
|
593 |
val lb = length Bs;
|
|
594 |
in
|
|
595 |
mk_AbsP (lb+la, proof_combP (sprf,
|
|
596 |
map PBound (lb + la - 1 downto la)) %
|
|
597 |
proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) (~n)] else []) @
|
|
598 |
map (flatten_params_proof 0 0 n) (oldAs ~~ (la - 1 downto 0))))
|
|
599 |
end;
|
|
600 |
|
|
601 |
|
|
602 |
(***** axioms for equality *****)
|
|
603 |
|
|
604 |
val aT = TFree ("'a", ["logic"]);
|
|
605 |
val bT = TFree ("'b", ["logic"]);
|
|
606 |
val x = Free ("x", aT);
|
|
607 |
val y = Free ("y", aT);
|
|
608 |
val z = Free ("z", aT);
|
|
609 |
val A = Free ("A", propT);
|
|
610 |
val B = Free ("B", propT);
|
|
611 |
val f = Free ("f", aT --> bT);
|
|
612 |
val g = Free ("g", aT --> bT);
|
|
613 |
|
|
614 |
local open Logic in
|
|
615 |
|
|
616 |
val equality_axms =
|
|
617 |
[("reflexive", mk_equals (x, x)),
|
|
618 |
("symmetric", mk_implies (mk_equals (x, y), mk_equals (y, x))),
|
|
619 |
("transitive", list_implies ([mk_equals (x, y), mk_equals (y, z)], mk_equals (x, z))),
|
|
620 |
("equal_intr", list_implies ([mk_implies (A, B), mk_implies (B, A)], mk_equals (A, B))),
|
|
621 |
("equal_elim", list_implies ([mk_equals (A, B), A], B)),
|
|
622 |
("abstract_rule", Logic.mk_implies
|
|
623 |
(all aT $ Abs ("x", aT, equals bT $ (f $ Bound 0) $ (g $ Bound 0)),
|
|
624 |
equals (aT --> bT) $
|
|
625 |
Abs ("x", aT, f $ Bound 0) $ Abs ("x", aT, g $ Bound 0))),
|
|
626 |
("combination", Logic.list_implies
|
|
627 |
([Logic.mk_equals (f, g), Logic.mk_equals (x, y)],
|
|
628 |
Logic.mk_equals (f $ x, g $ y)))];
|
|
629 |
|
|
630 |
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
|
|
631 |
equal_elim_axm, abstract_rule_axm, combination_axm] =
|
|
632 |
map (fn (s, t) => PAxm ("ProtoPure." ^ s, varify t, None)) equality_axms;
|
|
633 |
|
|
634 |
end;
|
|
635 |
|
|
636 |
val reflexive = reflexive_axm %% None;
|
|
637 |
|
|
638 |
fun symmetric (prf as PAxm ("ProtoPure.reflexive", _, _) %% _) = prf
|
|
639 |
| symmetric prf = symmetric_axm %% None %% None % prf;
|
|
640 |
|
|
641 |
fun transitive _ _ (PAxm ("ProtoPure.reflexive", _, _) %% _) prf2 = prf2
|
|
642 |
| transitive _ _ prf1 (PAxm ("ProtoPure.reflexive", _, _) %% _) = prf1
|
|
643 |
| transitive u (Type ("prop", [])) prf1 prf2 =
|
|
644 |
transitive_axm %% None %% Some (remove_types u) %% None % prf1 % prf2
|
|
645 |
| transitive u T prf1 prf2 =
|
|
646 |
transitive_axm %% None %% None %% None % prf1 % prf2;
|
|
647 |
|
|
648 |
fun abstract_rule x a prf =
|
|
649 |
abstract_rule_axm %% None %% None % forall_intr_proof x a prf;
|
|
650 |
|
|
651 |
fun check_comb (PAxm ("ProtoPure.combination", _, _) %% f %% g %% _ %% _ % prf % _) =
|
|
652 |
is_some f orelse check_comb prf
|
|
653 |
| check_comb (PAxm ("ProtoPure.transitive", _, _) %% _ %% _ %% _ % prf1 % prf2) =
|
|
654 |
check_comb prf1 andalso check_comb prf2
|
|
655 |
| check_comb (PAxm ("ProtoPure.symmetric", _, _) %% _ %% _ % prf) = check_comb prf
|
|
656 |
| check_comb _ = false;
|
|
657 |
|
|
658 |
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
|
|
659 |
let
|
|
660 |
val f = Envir.beta_norm f;
|
|
661 |
val g = Envir.beta_norm g;
|
|
662 |
val prf = if check_comb prf1 then
|
|
663 |
combination_axm %% None %% None
|
|
664 |
else (case prf1 of
|
|
665 |
PAxm ("ProtoPure.reflexive", _, _) %% _ =>
|
|
666 |
combination_axm %%% remove_types f %% None
|
|
667 |
| _ => combination_axm %%% remove_types f %%% remove_types g)
|
|
668 |
in
|
|
669 |
(case T of
|
|
670 |
Type ("fun", _) => prf %%
|
|
671 |
(case head_of f of
|
|
672 |
Abs _ => Some (remove_types t)
|
|
673 |
| Var _ => Some (remove_types t)
|
|
674 |
| _ => None) %%
|
|
675 |
(case head_of g of
|
|
676 |
Abs _ => Some (remove_types u)
|
|
677 |
| Var _ => Some (remove_types u)
|
|
678 |
| _ => None) % prf1 % prf2
|
|
679 |
| _ => prf %% None %% None % prf1 % prf2)
|
|
680 |
end;
|
|
681 |
|
|
682 |
fun equal_intr A B prf1 prf2 =
|
|
683 |
equal_intr_axm %%% remove_types A %%% remove_types B % prf1 % prf2;
|
|
684 |
|
|
685 |
fun equal_elim A B prf1 prf2 =
|
|
686 |
equal_elim_axm %%% remove_types A %%% remove_types B % prf1 % prf2;
|
|
687 |
|
|
688 |
|
|
689 |
(***** axioms and theorems *****)
|
|
690 |
|
|
691 |
fun vars_of t = rev (foldl_aterms
|
|
692 |
(fn (vs, v as Var _) => v ins vs | (vs, _) => vs) ([], t));
|
|
693 |
|
|
694 |
fun test_args _ [] = true
|
|
695 |
| test_args is (Bound i :: ts) =
|
|
696 |
not (i mem is) andalso test_args (i :: is) ts
|
|
697 |
| test_args _ _ = false;
|
|
698 |
|
|
699 |
fun is_fun (Type ("fun", _)) = true
|
|
700 |
| is_fun (TVar _) = true
|
|
701 |
| is_fun _ = false;
|
|
702 |
|
|
703 |
fun add_funvars Ts (vs, t) =
|
|
704 |
if is_fun (fastype_of1 (Ts, t)) then
|
|
705 |
vs union mapfilter (fn Var (ixn, T) =>
|
|
706 |
if is_fun T then Some ixn else None | _ => None) (vars_of t)
|
|
707 |
else vs;
|
|
708 |
|
|
709 |
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
|
|
710 |
add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
|
|
711 |
| add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
|
|
712 |
add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
|
|
713 |
| add_npvars q p Ts (vs, t) = (case strip_comb t of
|
|
714 |
(Var (ixn, _), ts) => if test_args [] ts then vs
|
|
715 |
else foldl (add_npvars q p Ts) (overwrite (vs,
|
|
716 |
(ixn, foldl (add_funvars Ts) (if_none (assoc (vs, ixn)) [], ts))), ts)
|
|
717 |
| (Abs (_, T, u), ts) => foldl (add_npvars q p (T::Ts)) (vs, u :: ts)
|
|
718 |
| (_, ts) => foldl (add_npvars q p Ts) (vs, ts));
|
|
719 |
|
|
720 |
fun prop_vars (Const ("==>", _) $ P $ Q) = prop_vars P union prop_vars Q
|
|
721 |
| prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
|
|
722 |
| prop_vars t = (case strip_comb t of
|
|
723 |
(Var (ixn, _), _) => [ixn] | _ => []);
|
|
724 |
|
|
725 |
fun is_proj t =
|
|
726 |
let
|
|
727 |
fun is_p i t = (case strip_comb t of
|
|
728 |
(Bound j, []) => false
|
|
729 |
| (Bound j, ts) => j >= i orelse exists (is_p i) ts
|
|
730 |
| (Abs (_, _, u), _) => is_p (i+1) u
|
|
731 |
| (_, ts) => exists (is_p i) ts)
|
|
732 |
in (case strip_abs_body t of
|
|
733 |
Bound _ => true
|
|
734 |
| t' => is_p 0 t')
|
|
735 |
end;
|
|
736 |
|
|
737 |
fun needed_vars prop =
|
|
738 |
foldl op union ([], map op ins (add_npvars true true [] ([], prop))) union
|
|
739 |
prop_vars prop;
|
|
740 |
|
|
741 |
fun gen_axm_proof c name prop =
|
|
742 |
let
|
|
743 |
val nvs = needed_vars prop;
|
|
744 |
val args = map (fn (v as Var (ixn, _)) =>
|
|
745 |
if ixn mem nvs then Some v else None) (vars_of prop) @
|
|
746 |
map Some (sort (make_ord atless) (term_frees prop));
|
|
747 |
in
|
|
748 |
proof_combt' (c (name, prop, None), args)
|
|
749 |
end;
|
|
750 |
|
|
751 |
val axm_proof = gen_axm_proof PAxm;
|
|
752 |
val oracle_proof = gen_axm_proof Oracle;
|
|
753 |
|
|
754 |
fun shrink ls lev (prf as Abst (a, T, body)) =
|
|
755 |
let val (b, is, ch, body') = shrink ls (lev+1) body
|
|
756 |
in (b, is, ch, if ch then Abst (a, T, body') else prf) end
|
|
757 |
| shrink ls lev (prf as AbsP (a, t, body)) =
|
|
758 |
let val (b, is, ch, body') = shrink (lev::ls) lev body
|
|
759 |
in (b orelse 0 mem is, mapfilter (fn 0 => None | i => Some (i-1)) is,
|
|
760 |
ch, if ch then AbsP (a, t, body') else prf)
|
|
761 |
end
|
|
762 |
| shrink ls lev prf =
|
|
763 |
let val (is, ch, _, prf') = shrink' ls lev [] [] prf
|
|
764 |
in (false, is, ch, prf') end
|
|
765 |
and shrink' ls lev ts prfs (prf as prf1 % prf2) =
|
|
766 |
let
|
|
767 |
val p as (_, is', ch', prf') = shrink ls lev prf2;
|
|
768 |
val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
|
|
769 |
in (is union is', ch orelse ch', ts',
|
|
770 |
if ch orelse ch' then prf'' % prf' else prf)
|
|
771 |
end
|
|
772 |
| shrink' ls lev ts prfs (prf as prf1 %% t) =
|
|
773 |
let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
|
|
774 |
in (is, ch orelse ch', ts', if ch orelse ch' then prf' %% t' else prf) end
|
|
775 |
| shrink' ls lev ts prfs (prf as PBound i) =
|
|
776 |
(if exists (fn Some (Bound j) => lev-j <= nth_elem (i, ls) | _ => true) ts
|
|
777 |
orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
|
|
778 |
| shrink' ls lev ts prfs (prf as Hyp _) = ([], false, map (pair false) ts, prf)
|
|
779 |
| shrink' ls lev ts prfs prf =
|
|
780 |
let
|
|
781 |
val prop = (case prf of PThm (_, _, prop, _) => prop | PAxm (_, prop, _) => prop
|
|
782 |
| Oracle (_, prop, _) => prop | _ => error "shrink: proof not in normal form");
|
|
783 |
val vs = vars_of prop;
|
|
784 |
val ts' = take (length vs, ts)
|
|
785 |
val ts'' = drop (length vs, ts)
|
|
786 |
val insts = take (length ts', map (fst o dest_Var) vs) ~~ ts';
|
|
787 |
val nvs = foldl (fn (ixns', (ixn, ixns)) =>
|
|
788 |
ixn ins (case assoc (insts, ixn) of
|
|
789 |
Some (Some t) => if is_proj t then ixns union ixns' else ixns'
|
|
790 |
| _ => ixns union ixns'))
|
|
791 |
(needed prop ts'' prfs, add_npvars false true [] ([], prop));
|
|
792 |
val insts' = map
|
|
793 |
(fn (ixn, x as Some _) => if ixn mem nvs then (false, x) else (true, None)
|
|
794 |
| (_, x) => (false, x)) insts
|
|
795 |
in ([], false, insts' @ map (pair false) ts'', prf) end
|
|
796 |
and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
|
|
797 |
(if b then map (fst o dest_Var) (vars_of t) else []) union needed u ts prfs
|
|
798 |
| needed (Var (ixn, _)) (_::_) _ = [ixn]
|
|
799 |
| needed _ _ _ = [];
|
|
800 |
|
|
801 |
|
|
802 |
(**** Simple first order matching functions for terms and proofs ****)
|
|
803 |
|
|
804 |
exception PMatch;
|
|
805 |
|
|
806 |
(** see pattern.ML **)
|
|
807 |
|
|
808 |
fun fomatch Ts tmatch =
|
|
809 |
let
|
|
810 |
fun mtch (instsp as (tyinsts, insts)) = fn
|
|
811 |
(Var (ixn, T), t) =>
|
|
812 |
(tmatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))), (ixn, t)::insts)
|
|
813 |
| (Free (a, T), Free (b, U)) =>
|
|
814 |
if a=b then (tmatch (tyinsts, K (T, U)), insts) else raise PMatch
|
|
815 |
| (Const (a, T), Const (b, U)) =>
|
|
816 |
if a=b then (tmatch (tyinsts, K (T, U)), insts) else raise PMatch
|
|
817 |
| (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
|
|
818 |
| _ => raise PMatch
|
|
819 |
in mtch end;
|
|
820 |
|
|
821 |
fun match_proof Ts tmatch =
|
|
822 |
let
|
|
823 |
fun mtch (inst as (pinst, tinst as (tyinsts, insts))) = fn
|
|
824 |
(Hyp (Var (ixn, _)), prf) => ((ixn, prf)::pinst, tinst)
|
|
825 |
| (prf1 %% opt1, prf2 %% opt2) =>
|
|
826 |
let val inst' as (pinst, tinst) = mtch inst (prf1, prf2)
|
|
827 |
in (case (opt1, opt2) of
|
|
828 |
(None, _) => inst'
|
|
829 |
| (Some _, None) => raise PMatch
|
|
830 |
| (Some t, Some u) => (pinst, fomatch Ts tmatch tinst (t, Envir.beta_norm u)))
|
|
831 |
end
|
|
832 |
| (prf1 % prf2, prf1' % prf2') =>
|
|
833 |
mtch (mtch inst (prf1, prf1')) (prf2, prf2')
|
|
834 |
| (PThm ((name1, _), _, prop1, None), PThm ((name2, _), _, prop2, _)) =>
|
|
835 |
if name1=name2 andalso prop1=prop2 then inst else raise PMatch
|
|
836 |
| (PThm ((name1, _), _, prop1, Some Ts), PThm ((name2, _), _, prop2, Some Us)) =>
|
|
837 |
if name1=name2 andalso prop1=prop2 then
|
|
838 |
(pinst, (foldl (tmatch o apsnd K) (tyinsts, Ts ~~ Us), insts))
|
|
839 |
else raise PMatch
|
|
840 |
| (PAxm (s1, _, None), PAxm (s2, _, _)) =>
|
|
841 |
if s1=s2 then inst else raise PMatch
|
|
842 |
| (PAxm (s1, _, Some Ts), PAxm (s2, _, Some Us)) =>
|
|
843 |
if s1=s2 then
|
|
844 |
(pinst, (foldl (tmatch o apsnd K) (tyinsts, Ts ~~ Us), insts))
|
|
845 |
else raise PMatch
|
|
846 |
| _ => raise PMatch
|
|
847 |
in mtch end;
|
|
848 |
|
|
849 |
fun prf_subst (pinst, (tyinsts, insts)) =
|
|
850 |
let
|
|
851 |
val substT = typ_subst_TVars_Vartab tyinsts;
|
|
852 |
|
|
853 |
fun subst' lev (t as Var (ixn, _)) = (case assoc (insts, ixn) of
|
|
854 |
None => t
|
|
855 |
| Some u => incr_boundvars lev u)
|
|
856 |
| subst' lev (Const (s, T)) = Const (s, substT T)
|
|
857 |
| subst' lev (Free (s, T)) = Free (s, substT T)
|
|
858 |
| subst' lev (Abs (a, T, body)) = Abs (a, substT T, subst' (lev+1) body)
|
|
859 |
| subst' lev (f $ t) = subst' lev f $ subst' lev t
|
|
860 |
| subst' _ t = t;
|
|
861 |
|
|
862 |
fun subst plev tlev (AbsP (a, t, body)) =
|
|
863 |
AbsP (a, apsome (subst' tlev) t, subst (plev+1) tlev body)
|
|
864 |
| subst plev tlev (Abst (a, T, body)) =
|
|
865 |
Abst (a, apsome substT T, subst plev (tlev+1) body)
|
|
866 |
| subst plev tlev (prf % prf') = subst plev tlev prf % subst plev tlev prf'
|
|
867 |
| subst plev tlev (prf %% t) = subst plev tlev prf %% apsome (subst' tlev) t
|
|
868 |
| subst plev tlev (prf as Hyp (Var (ixn, _))) = (case assoc (pinst, ixn) of
|
|
869 |
None => prf
|
|
870 |
| Some prf' => incr_pboundvars plev tlev prf')
|
|
871 |
| subst _ _ (PThm (id, prf, prop, Ts)) =
|
|
872 |
PThm (id, prf, prop, apsome (map substT) Ts)
|
|
873 |
| subst _ _ (PAxm (id, prop, Ts)) =
|
|
874 |
PAxm (id, prop, apsome (map substT) Ts)
|
|
875 |
| subst _ _ t = t
|
|
876 |
in subst 0 0 end;
|
|
877 |
|
|
878 |
(**** rewriting on proof terms ****)
|
|
879 |
|
|
880 |
fun rewrite_prf tmatch (rules, procs) prf =
|
|
881 |
let
|
|
882 |
fun rew _ (Abst (_, _, body) %% Some t) = Some (prf_subst_bounds [t] body)
|
|
883 |
| rew _ (AbsP (_, _, body) % prf) = Some (prf_subst_pbounds [prf] body)
|
|
884 |
| rew Ts prf = (case get_first (fn (_, r) => r Ts prf) procs of
|
|
885 |
Some prf' => Some prf'
|
|
886 |
| None => get_first (fn (prf1, prf2) => Some (prf_subst
|
|
887 |
(match_proof Ts tmatch ([], (Vartab.empty, [])) (prf1, prf)) prf2)
|
|
888 |
handle PMatch => None) rules);
|
|
889 |
|
|
890 |
fun rew0 Ts (prf as AbsP (_, _, prf' % PBound 0)) =
|
|
891 |
if prf_loose_Pbvar1 prf' 0 then rew Ts prf
|
|
892 |
else
|
|
893 |
let val prf'' = incr_pboundvars (~1) 0 prf'
|
|
894 |
in Some (if_none (rew Ts prf'') prf'') end
|
|
895 |
| rew0 Ts (prf as Abst (_, _, prf' %% Some (Bound 0))) =
|
|
896 |
if prf_loose_bvar1 prf' 0 then rew Ts prf
|
|
897 |
else
|
|
898 |
let val prf'' = incr_pboundvars 0 (~1) prf'
|
|
899 |
in Some (if_none (rew Ts prf'') prf'') end
|
|
900 |
| rew0 Ts prf = rew Ts prf;
|
|
901 |
|
|
902 |
fun rew1 Ts prf = (case rew2 Ts prf of
|
|
903 |
Some prf1 => (case rew0 Ts prf1 of
|
|
904 |
Some prf2 => Some (if_none (rew1 Ts prf2) prf2)
|
|
905 |
| None => Some prf1)
|
|
906 |
| None => (case rew0 Ts prf of
|
|
907 |
Some prf1 => Some (if_none (rew1 Ts prf1) prf1)
|
|
908 |
| None => None))
|
|
909 |
|
|
910 |
and rew2 Ts (prf %% Some t) = (case prf of
|
|
911 |
Abst (_, _, body) =>
|
|
912 |
let val prf' = prf_subst_bounds [t] body
|
|
913 |
in Some (if_none (rew2 Ts prf') prf') end
|
|
914 |
| _ => (case rew1 Ts prf of
|
|
915 |
Some prf' => Some (prf' %% Some t)
|
|
916 |
| None => None))
|
|
917 |
| rew2 Ts (prf %% None) = apsome (fn prf' => prf' %% None) (rew1 Ts prf)
|
|
918 |
| rew2 Ts (prf1 % prf2) = (case prf1 of
|
|
919 |
AbsP (_, _, body) =>
|
|
920 |
let val prf' = prf_subst_pbounds [prf2] body
|
|
921 |
in Some (if_none (rew2 Ts prf') prf') end
|
|
922 |
| _ => (case rew1 Ts prf1 of
|
|
923 |
Some prf1' => (case rew1 Ts prf2 of
|
|
924 |
Some prf2' => Some (prf1' % prf2')
|
|
925 |
| None => Some (prf1' % prf2))
|
|
926 |
| None => (case rew1 Ts prf2 of
|
|
927 |
Some prf2' => Some (prf1 % prf2')
|
|
928 |
| None => None)))
|
|
929 |
| rew2 Ts (Abst (s, T, prf)) = (case rew1 (if_none T dummyT :: Ts) prf of
|
|
930 |
Some prf' => Some (Abst (s, T, prf'))
|
|
931 |
| None => None)
|
|
932 |
| rew2 Ts (AbsP (s, t, prf)) = (case rew1 Ts prf of
|
|
933 |
Some prf' => Some (AbsP (s, t, prf'))
|
|
934 |
| None => None)
|
|
935 |
| rew2 _ _ = None
|
|
936 |
|
|
937 |
in if_none (rew1 [] prf) prf end;
|
|
938 |
|
|
939 |
fun rewrite_proof tsig = rewrite_prf (fn (tab, f) =>
|
|
940 |
Type.typ_match tsig (tab, f ()) handle Type.TYPE_MATCH => raise PMatch);
|
|
941 |
|
|
942 |
(**** theory data ****)
|
|
943 |
|
|
944 |
(* data kind 'Pure/proof' *)
|
|
945 |
|
|
946 |
structure ProofArgs =
|
|
947 |
struct
|
|
948 |
val name = "Pure/proof";
|
|
949 |
type T = ((proof * proof) list *
|
|
950 |
(string * (typ list -> proof -> proof option)) list) ref;
|
|
951 |
|
|
952 |
val empty = (ref ([], [])): T;
|
|
953 |
fun copy (ref rews) = (ref rews): T; (*create new reference!*)
|
|
954 |
val prep_ext = copy;
|
|
955 |
fun merge (ref (rules1, procs1), ref (rules2, procs2)) = ref
|
|
956 |
(merge_lists rules1 rules2,
|
|
957 |
generic_merge (uncurry equal o pairself fst) I I procs1 procs2);
|
|
958 |
fun print _ _ = ();
|
|
959 |
end;
|
|
960 |
|
|
961 |
structure ProofData = TheoryDataFun(ProofArgs);
|
|
962 |
|
|
963 |
val init = ProofData.init;
|
|
964 |
|
|
965 |
fun add_prf_rrules thy rs =
|
|
966 |
let val r = ProofData.get thy
|
|
967 |
in r := (rs @ fst (!r), snd (!r)) end;
|
|
968 |
|
|
969 |
fun add_prf_rprocs thy ps =
|
|
970 |
let val r = ProofData.get thy
|
|
971 |
in r := (fst (!r), ps @ snd (!r)) end;
|
|
972 |
|
|
973 |
fun thm_proof sign (name, tags) hyps prop prf =
|
|
974 |
let
|
|
975 |
val hyps' = gen_distinct op aconv hyps;
|
|
976 |
val prop = Logic.list_implies (hyps', prop);
|
|
977 |
val nvs = needed_vars prop;
|
|
978 |
val args = map (fn (v as Var (ixn, _)) =>
|
|
979 |
if ixn mem nvs then Some v else None) (vars_of prop) @
|
|
980 |
map Some (sort (make_ord atless) (term_frees prop));
|
|
981 |
val opt_prf = if !keep_derivs=FullDeriv then
|
|
982 |
#4 (shrink [] 0 (rewrite_prf fst (!(ProofData.get_sg sign))
|
|
983 |
(foldr (uncurry implies_intr_proof) (hyps', prf))))
|
|
984 |
else MinProof (mk_min_proof ([], prf));
|
|
985 |
val head = (case strip_combt (fst (strip_combP prf)) of
|
|
986 |
(PThm ((old_name, _), prf', prop', None), args') =>
|
|
987 |
if (old_name="" orelse old_name=name) andalso
|
|
988 |
prop = prop' andalso args = args' then
|
|
989 |
PThm ((name, tags), prf', prop, None)
|
|
990 |
else
|
|
991 |
PThm ((name, tags), opt_prf, prop, None)
|
|
992 |
| _ => PThm ((name, tags), opt_prf, prop, None))
|
|
993 |
in
|
|
994 |
proof_combP (proof_combt' (head, args), map Hyp hyps')
|
|
995 |
end;
|
|
996 |
|
|
997 |
fun get_name_tags prop prf = (case strip_combt (fst (strip_combP prf)) of
|
|
998 |
(PThm ((name, tags), _, prop', _), _) =>
|
|
999 |
if prop=prop' then (name, tags) else ("", [])
|
|
1000 |
| (PAxm (name, prop', _), _) =>
|
|
1001 |
if prop=prop' then (name, []) else ("", [])
|
|
1002 |
| _ => ("", []));
|
|
1003 |
|
|
1004 |
end;
|
|
1005 |
|
|
1006 |
structure BasicProofterm : BASIC_PROOFTERM = Proofterm;
|
|
1007 |
open BasicProofterm;
|