author  paulson 
Fri, 05 Oct 2007 09:59:03 +0200  
changeset 24854  0ebcd575d3c6 
parent 24830  a7b3ab44d993 
child 26286  3ff5d257f175 
permissions  rwrr 
9487  1 
(* Title: FOL/FOL.thy 
2 
ID: $Id$ 

3 
Author: Lawrence C Paulson and Markus Wenzel 

11678  4 
*) 
9487  5 

11678  6 
header {* Classical firstorder logic *} 
4093  7 

18456  8 
theory FOL 
15481  9 
imports IFOL 
23154  10 
uses 
24097  11 
"~~/src/Provers/classical.ML" 
12 
"~~/src/Provers/blast.ML" 

13 
"~~/src/Provers/clasimp.ML" 

24830
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

14 
"~~/src/Tools/induct.ML" 
23154  15 
("cladata.ML") 
16 
("blastdata.ML") 

17 
("simpdata.ML") 

18456  18 
begin 
9487  19 

20 

21 
subsection {* The classical axiom *} 

4093  22 

7355
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

23 
axioms 
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

24 
classical: "(~P ==> P) ==> P" 
4093  25 

9487  26 

11678  27 
subsection {* Lemmas and proof tools *} 
9487  28 

21539  29 
lemma ccontr: "(\<not> P \<Longrightarrow> False) \<Longrightarrow> P" 
30 
by (erule FalseE [THEN classical]) 

31 

32 
(*** Classical introduction rules for  and EX ***) 

33 

34 
lemma disjCI: "(~Q ==> P) ==> PQ" 

35 
apply (rule classical) 

36 
apply (assumption  erule meta_mp  rule disjI1 notI)+ 

37 
apply (erule notE disjI2)+ 

38 
done 

39 

40 
(*introduction rule involving only EX*) 

41 
lemma ex_classical: 

42 
assumes r: "~(EX x. P(x)) ==> P(a)" 

43 
shows "EX x. P(x)" 

44 
apply (rule classical) 

45 
apply (rule exI, erule r) 

46 
done 

47 

48 
(*version of above, simplifying ~EX to ALL~ *) 

49 
lemma exCI: 

50 
assumes r: "ALL x. ~P(x) ==> P(a)" 

51 
shows "EX x. P(x)" 

52 
apply (rule ex_classical) 

53 
apply (rule notI [THEN allI, THEN r]) 

54 
apply (erule notE) 

55 
apply (erule exI) 

56 
done 

57 

58 
lemma excluded_middle: "~P  P" 

59 
apply (rule disjCI) 

60 
apply assumption 

61 
done 

62 

63 
(*For disjunctive case analysis*) 

64 
ML {* 

22139  65 
fun excluded_middle_tac sP = 
66 
res_inst_tac [("Q",sP)] (@{thm excluded_middle} RS @{thm disjE}) 

21539  67 
*} 
68 

69 
lemma case_split_thm: 

70 
assumes r1: "P ==> Q" 

71 
and r2: "~P ==> Q" 

72 
shows Q 

73 
apply (rule excluded_middle [THEN disjE]) 

74 
apply (erule r2) 

75 
apply (erule r1) 

76 
done 

77 

24830
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

78 
lemmas case_split = case_split_thm [case_names True False] 
21539  79 

80 
(*HOL's more natural case analysis tactic*) 

81 
ML {* 

22139  82 
fun case_tac a = res_inst_tac [("P",a)] @{thm case_split_thm} 
21539  83 
*} 
84 

85 

86 
(*** Special elimination rules *) 

87 

88 

89 
(*Classical implies (>) elimination. *) 

90 
lemma impCE: 

91 
assumes major: "P>Q" 

92 
and r1: "~P ==> R" 

93 
and r2: "Q ==> R" 

94 
shows R 

95 
apply (rule excluded_middle [THEN disjE]) 

96 
apply (erule r1) 

97 
apply (rule r2) 

98 
apply (erule major [THEN mp]) 

99 
done 

100 

101 
(*This version of > elimination works on Q before P. It works best for 

102 
those cases in which P holds "almost everywhere". Can't install as 

103 
default: would break old proofs.*) 

104 
lemma impCE': 

105 
assumes major: "P>Q" 

106 
and r1: "Q ==> R" 

107 
and r2: "~P ==> R" 

108 
shows R 

109 
apply (rule excluded_middle [THEN disjE]) 

110 
apply (erule r2) 

111 
apply (rule r1) 

112 
apply (erule major [THEN mp]) 

113 
done 

114 

115 
(*Double negation law*) 

116 
lemma notnotD: "~~P ==> P" 

117 
apply (rule classical) 

118 
apply (erule notE) 

119 
apply assumption 

120 
done 

121 

122 
lemma contrapos2: "[ Q; ~ P ==> ~ Q ] ==> P" 

123 
apply (rule classical) 

124 
apply (drule (1) meta_mp) 

125 
apply (erule (1) notE) 

126 
done 

127 

128 
(*** Tactics for implication and contradiction ***) 

129 

130 
(*Classical <> elimination. Proof substitutes P=Q in 

131 
~P ==> ~Q and P ==> Q *) 

132 
lemma iffCE: 

133 
assumes major: "P<>Q" 

134 
and r1: "[ P; Q ] ==> R" 

135 
and r2: "[ ~P; ~Q ] ==> R" 

136 
shows R 

137 
apply (rule major [unfolded iff_def, THEN conjE]) 

138 
apply (elim impCE) 

139 
apply (erule (1) r2) 

140 
apply (erule (1) notE)+ 

141 
apply (erule (1) r1) 

142 
done 

143 

144 

145 
(*Better for fast_tac: needs no quantifier duplication!*) 

146 
lemma alt_ex1E: 

147 
assumes major: "EX! x. P(x)" 

148 
and r: "!!x. [ P(x); ALL y y'. P(y) & P(y') > y=y' ] ==> R" 

149 
shows R 

150 
using major 

151 
proof (rule ex1E) 

152 
fix x 

153 
assume * : "\<forall>y. P(y) \<longrightarrow> y = x" 

154 
assume "P(x)" 

155 
then show R 

156 
proof (rule r) 

157 
{ fix y y' 

158 
assume "P(y)" and "P(y')" 

159 
with * have "x = y" and "x = y'" by  (tactic "IntPr.fast_tac 1")+ 

160 
then have "y = y'" by (rule subst) 

161 
} note r' = this 

162 
show "\<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'" by (intro strip, elim conjE) (rule r') 

163 
qed 

164 
qed 

9525  165 

10383  166 
use "cladata.ML" 
167 
setup Cla.setup 

14156  168 
setup cla_setup 
169 
setup case_setup 

10383  170 

9487  171 
use "blastdata.ML" 
172 
setup Blast.setup 

13550  173 

174 

175 
lemma ex1_functional: "[ EX! z. P(a,z); P(a,b); P(a,c) ] ==> b = c" 

21539  176 
by blast 
20223  177 

178 
(* Elimination of True from asumptions: *) 

179 
lemma True_implies_equals: "(True ==> PROP P) == PROP P" 

180 
proof 

181 
assume "True \<Longrightarrow> PROP P" 

182 
from this and TrueI show "PROP P" . 

183 
next 

184 
assume "PROP P" 

185 
then show "PROP P" . 

186 
qed 

9487  187 

21539  188 
lemma uncurry: "P > Q > R ==> P & Q > R" 
189 
by blast 

190 

191 
lemma iff_allI: "(!!x. P(x) <> Q(x)) ==> (ALL x. P(x)) <> (ALL x. Q(x))" 

192 
by blast 

193 

194 
lemma iff_exI: "(!!x. P(x) <> Q(x)) ==> (EX x. P(x)) <> (EX x. Q(x))" 

195 
by blast 

196 

197 
lemma all_comm: "(ALL x y. P(x,y)) <> (ALL y x. P(x,y))" by blast 

198 

199 
lemma ex_comm: "(EX x y. P(x,y)) <> (EX y x. P(x,y))" by blast 

200 

9487  201 
use "simpdata.ML" 
202 
setup simpsetup 

203 
setup "Simplifier.method_setup Splitter.split_modifiers" 

204 
setup Splitter.setup 

205 
setup Clasimp.setup 

18591  206 
setup EqSubst.setup 
15481  207 

208 

14085  209 
subsection {* Other simple lemmas *} 
210 

211 
lemma [simp]: "((P>R) <> (Q>R)) <> ((P<>Q)  R)" 

212 
by blast 

213 

214 
lemma [simp]: "((P>Q) <> (P>R)) <> (P > (Q<>R))" 

215 
by blast 

216 

217 
lemma not_disj_iff_imp: "~P  Q <> (P>Q)" 

218 
by blast 

219 

220 
(** Monotonicity of implications **) 

221 

222 
lemma conj_mono: "[ P1>Q1; P2>Q2 ] ==> (P1&P2) > (Q1&Q2)" 

223 
by fast (*or (IntPr.fast_tac 1)*) 

224 

225 
lemma disj_mono: "[ P1>Q1; P2>Q2 ] ==> (P1P2) > (Q1Q2)" 

226 
by fast (*or (IntPr.fast_tac 1)*) 

227 

228 
lemma imp_mono: "[ Q1>P1; P2>Q2 ] ==> (P1>P2)>(Q1>Q2)" 

229 
by fast (*or (IntPr.fast_tac 1)*) 

230 

231 
lemma imp_refl: "P>P" 

232 
by (rule impI, assumption) 

233 

234 
(*The quantifier monotonicity rules are also intuitionistically valid*) 

235 
lemma ex_mono: "(!!x. P(x) > Q(x)) ==> (EX x. P(x)) > (EX x. Q(x))" 

236 
by blast 

237 

238 
lemma all_mono: "(!!x. P(x) > Q(x)) ==> (ALL x. P(x)) > (ALL x. Q(x))" 

239 
by blast 

240 

11678  241 

242 
subsection {* Proof by cases and induction *} 

243 

244 
text {* Proper handling of nonatomic rule statements. *} 

245 

246 
constdefs 

18456  247 
induct_forall where "induct_forall(P) == \<forall>x. P(x)" 
248 
induct_implies where "induct_implies(A, B) == A \<longrightarrow> B" 

249 
induct_equal where "induct_equal(x, y) == x = y" 

250 
induct_conj where "induct_conj(A, B) == A \<and> B" 

11678  251 

252 
lemma induct_forall_eq: "(!!x. P(x)) == Trueprop(induct_forall(\<lambda>x. P(x)))" 

18816  253 
unfolding atomize_all induct_forall_def . 
11678  254 

255 
lemma induct_implies_eq: "(A ==> B) == Trueprop(induct_implies(A, B))" 

18816  256 
unfolding atomize_imp induct_implies_def . 
11678  257 

258 
lemma induct_equal_eq: "(x == y) == Trueprop(induct_equal(x, y))" 

18816  259 
unfolding atomize_eq induct_equal_def . 
11678  260 

18456  261 
lemma induct_conj_eq: 
262 
includes meta_conjunction_syntax 

263 
shows "(A && B) == Trueprop(induct_conj(A, B))" 

18816  264 
unfolding atomize_conj induct_conj_def . 
11988  265 

18456  266 
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq 
267 
lemmas induct_rulify [symmetric, standard] = induct_atomize 

268 
lemmas induct_rulify_fallback = 

269 
induct_forall_def induct_implies_def induct_equal_def induct_conj_def 

11678  270 

18456  271 
hide const induct_forall induct_implies induct_equal induct_conj 
11678  272 

273 

274 
text {* Method setup. *} 

275 

276 
ML {* 

24830
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

277 
structure Induct = InductFun 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

278 
( 
22139  279 
val cases_default = @{thm case_split} 
280 
val atomize = @{thms induct_atomize} 

281 
val rulify = @{thms induct_rulify} 

282 
val rulify_fallback = @{thms induct_rulify_fallback} 

24830
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

283 
); 
11678  284 
*} 
285 

24830
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

286 
setup Induct.setup 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
wenzelm
parents:
24097
diff
changeset

287 
declare case_split [cases type: o] 
11678  288 

4854  289 
end 