author | berghofe |
Fri, 12 Oct 2001 18:29:51 +0200 | |
changeset 11737 | 0ec18d3131b5 |
parent 11736 | da6fc37ed6fa |
child 11760 | 8e906f051fbc |
permissions | -rw-r--r-- |
10413 | 1 |
(* Title: Pure/meta_simplifier.ML |
2 |
ID: $Id$ |
|
11672 | 3 |
Author: Tobias Nipkow and Stefan Berghofer |
10413 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
11672 | 6 |
Meta-level Simplification. |
10413 | 7 |
*) |
8 |
||
11672 | 9 |
signature BASIC_META_SIMPLIFIER = |
10 |
sig |
|
11 |
val trace_simp: bool ref |
|
12 |
val debug_simp: bool ref |
|
13 |
end; |
|
14 |
||
10413 | 15 |
signature META_SIMPLIFIER = |
16 |
sig |
|
11672 | 17 |
include BASIC_META_SIMPLIFIER |
10413 | 18 |
exception SIMPLIFIER of string * thm |
19 |
type meta_simpset |
|
20 |
val dest_mss : meta_simpset -> |
|
21 |
{simps: thm list, congs: thm list, procs: (string * cterm list) list} |
|
22 |
val empty_mss : meta_simpset |
|
23 |
val clear_mss : meta_simpset -> meta_simpset |
|
24 |
val merge_mss : meta_simpset * meta_simpset -> meta_simpset |
|
25 |
val add_simps : meta_simpset * thm list -> meta_simpset |
|
26 |
val del_simps : meta_simpset * thm list -> meta_simpset |
|
27 |
val mss_of : thm list -> meta_simpset |
|
28 |
val add_congs : meta_simpset * thm list -> meta_simpset |
|
29 |
val del_congs : meta_simpset * thm list -> meta_simpset |
|
30 |
val add_simprocs : meta_simpset * |
|
31 |
(string * cterm list * (Sign.sg -> thm list -> term -> thm option) * stamp) list |
|
32 |
-> meta_simpset |
|
33 |
val del_simprocs : meta_simpset * |
|
34 |
(string * cterm list * (Sign.sg -> thm list -> term -> thm option) * stamp) list |
|
35 |
-> meta_simpset |
|
36 |
val add_prems : meta_simpset * thm list -> meta_simpset |
|
37 |
val prems_of_mss : meta_simpset -> thm list |
|
38 |
val set_mk_rews : meta_simpset * (thm -> thm list) -> meta_simpset |
|
39 |
val set_mk_sym : meta_simpset * (thm -> thm option) -> meta_simpset |
|
40 |
val set_mk_eq_True : meta_simpset * (thm -> thm option) -> meta_simpset |
|
41 |
val set_termless : meta_simpset * (term * term -> bool) -> meta_simpset |
|
11672 | 42 |
val rewrite_cterm: bool * bool * bool -> |
43 |
(meta_simpset -> thm -> thm option) -> meta_simpset -> cterm -> thm |
|
11736 | 44 |
val goals_conv : (int -> bool) -> (cterm -> thm) -> cterm -> thm |
45 |
val forall_conv : (cterm -> thm) -> cterm -> thm |
|
46 |
val fconv_rule : (cterm -> thm) -> thm -> thm |
|
11672 | 47 |
val full_rewrite_cterm_aux: (meta_simpset -> thm -> thm option) -> thm list -> cterm -> cterm |
10413 | 48 |
val rewrite_rule_aux : (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm |
49 |
val rewrite_thm : bool * bool * bool |
|
50 |
-> (meta_simpset -> thm -> thm option) |
|
51 |
-> meta_simpset -> thm -> thm |
|
52 |
val rewrite_goals_rule_aux: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm |
|
53 |
val rewrite_goal_rule : bool* bool * bool |
|
54 |
-> (meta_simpset -> thm -> thm option) |
|
55 |
-> meta_simpset -> int -> thm -> thm |
|
56 |
end; |
|
57 |
||
58 |
structure MetaSimplifier : META_SIMPLIFIER = |
|
59 |
struct |
|
60 |
||
61 |
(** diagnostics **) |
|
62 |
||
63 |
exception SIMPLIFIER of string * thm; |
|
64 |
||
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
65 |
val simp_depth = ref 0; |
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
66 |
|
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
67 |
fun println a = writeln(replicate_string (!simp_depth) " " ^ a) |
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
68 |
|
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
69 |
fun prnt warn a = if warn then warning a else println a; |
10413 | 70 |
|
71 |
fun prtm warn a sign t = |
|
72 |
(prnt warn a; prnt warn (Sign.string_of_term sign t)); |
|
73 |
||
74 |
fun prctm warn a t = |
|
75 |
(prnt warn a; prnt warn (Display.string_of_cterm t)); |
|
76 |
||
77 |
fun prthm warn a thm = |
|
78 |
let val {sign, prop, ...} = rep_thm thm |
|
79 |
in prtm warn a sign prop end; |
|
80 |
||
81 |
val trace_simp = ref false; |
|
82 |
val debug_simp = ref false; |
|
83 |
||
84 |
fun trace warn a = if !trace_simp then prnt warn a else (); |
|
85 |
fun debug warn a = if !debug_simp then prnt warn a else (); |
|
86 |
||
87 |
fun trace_term warn a sign t = if !trace_simp then prtm warn a sign t else (); |
|
88 |
fun trace_cterm warn a t = if !trace_simp then prctm warn a t else (); |
|
89 |
fun debug_term warn a sign t = if !debug_simp then prtm warn a sign t else (); |
|
90 |
||
91 |
fun trace_thm warn a thm = |
|
92 |
let val {sign, prop, ...} = rep_thm thm |
|
93 |
in trace_term warn a sign prop end; |
|
94 |
||
95 |
||
96 |
||
97 |
(** meta simp sets **) |
|
98 |
||
99 |
(* basic components *) |
|
100 |
||
101 |
type rrule = {thm: thm, lhs: term, elhs: cterm, fo: bool, perm: bool}; |
|
102 |
(* thm: the rewrite rule |
|
103 |
lhs: the left-hand side |
|
104 |
elhs: the etac-contracted lhs. |
|
105 |
fo: use first-order matching |
|
106 |
perm: the rewrite rule is permutative |
|
107 |
Reamrks: |
|
108 |
- elhs is used for matching, |
|
109 |
lhs only for preservation of bound variable names. |
|
110 |
- fo is set iff |
|
111 |
either elhs is first-order (no Var is applied), |
|
112 |
in which case fo-matching is complete, |
|
113 |
or elhs is not a pattern, |
|
114 |
in which case there is nothing better to do. |
|
115 |
*) |
|
116 |
type cong = {thm: thm, lhs: cterm}; |
|
117 |
type simproc = |
|
118 |
{name: string, proc: Sign.sg -> thm list -> term -> thm option, lhs: cterm, id: stamp}; |
|
119 |
||
120 |
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) = |
|
121 |
#prop (rep_thm thm1) aconv #prop (rep_thm thm2); |
|
122 |
||
123 |
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) = |
|
124 |
#prop (rep_thm thm1) aconv #prop (rep_thm thm2); |
|
125 |
||
126 |
fun eq_prem (thm1, thm2) = |
|
127 |
#prop (rep_thm thm1) aconv #prop (rep_thm thm2); |
|
128 |
||
129 |
fun eq_simproc ({id = s1, ...}:simproc, {id = s2, ...}:simproc) = (s1 = s2); |
|
130 |
||
131 |
fun mk_simproc (name, proc, lhs, id) = |
|
132 |
{name = name, proc = proc, lhs = lhs, id = id}; |
|
133 |
||
134 |
||
135 |
(* datatype mss *) |
|
136 |
||
137 |
(* |
|
138 |
A "mss" contains data needed during conversion: |
|
139 |
rules: discrimination net of rewrite rules; |
|
140 |
congs: association list of congruence rules and |
|
141 |
a list of `weak' congruence constants. |
|
142 |
A congruence is `weak' if it avoids normalization of some argument. |
|
143 |
procs: discrimination net of simplification procedures |
|
144 |
(functions that prove rewrite rules on the fly); |
|
145 |
bounds: names of bound variables already used |
|
146 |
(for generating new names when rewriting under lambda abstractions); |
|
147 |
prems: current premises; |
|
148 |
mk_rews: mk: turns simplification thms into rewrite rules; |
|
149 |
mk_sym: turns == around; (needs Drule!) |
|
150 |
mk_eq_True: turns P into P == True - logic specific; |
|
151 |
termless: relation for ordered rewriting; |
|
11504 | 152 |
depth: depth of conditional rewriting; |
10413 | 153 |
*) |
154 |
||
155 |
datatype meta_simpset = |
|
156 |
Mss of { |
|
157 |
rules: rrule Net.net, |
|
158 |
congs: (string * cong) list * string list, |
|
159 |
procs: simproc Net.net, |
|
160 |
bounds: string list, |
|
161 |
prems: thm list, |
|
162 |
mk_rews: {mk: thm -> thm list, |
|
163 |
mk_sym: thm -> thm option, |
|
164 |
mk_eq_True: thm -> thm option}, |
|
11504 | 165 |
termless: term * term -> bool, |
166 |
depth: int}; |
|
10413 | 167 |
|
11504 | 168 |
fun mk_mss (rules, congs, procs, bounds, prems, mk_rews, termless, depth) = |
10413 | 169 |
Mss {rules = rules, congs = congs, procs = procs, bounds = bounds, |
11504 | 170 |
prems=prems, mk_rews=mk_rews, termless=termless, depth=depth}; |
10413 | 171 |
|
11504 | 172 |
fun upd_rules(Mss{rules,congs,procs,bounds,prems,mk_rews,termless,depth}, rules') = |
173 |
mk_mss(rules',congs,procs,bounds,prems,mk_rews,termless,depth); |
|
10413 | 174 |
|
175 |
val empty_mss = |
|
176 |
let val mk_rews = {mk = K [], mk_sym = K None, mk_eq_True = K None} |
|
11504 | 177 |
in mk_mss (Net.empty, ([], []), Net.empty, [], [], mk_rews, Term.termless, 0) end; |
10413 | 178 |
|
179 |
fun clear_mss (Mss {mk_rews, termless, ...}) = |
|
11504 | 180 |
mk_mss (Net.empty, ([], []), Net.empty, [], [], mk_rews, termless,0); |
10413 | 181 |
|
11504 | 182 |
fun incr_depth(Mss{rules,congs,procs,bounds,prems,mk_rews,termless,depth}) = |
183 |
mk_mss (rules, congs, procs, bounds, prems, mk_rews, termless, depth+1) |
|
184 |
||
10413 | 185 |
|
186 |
||
187 |
(** simpset operations **) |
|
188 |
||
189 |
(* term variables *) |
|
190 |
||
191 |
val add_term_varnames = foldl_aterms (fn (xs, Var (x, _)) => ins_ix (x, xs) | (xs, _) => xs); |
|
192 |
fun term_varnames t = add_term_varnames ([], t); |
|
193 |
||
194 |
||
195 |
(* dest_mss *) |
|
196 |
||
197 |
fun dest_mss (Mss {rules, congs, procs, ...}) = |
|
198 |
{simps = map (fn (_, {thm, ...}) => thm) (Net.dest rules), |
|
199 |
congs = map (fn (_, {thm, ...}) => thm) (fst congs), |
|
200 |
procs = |
|
201 |
map (fn (_, {name, lhs, id, ...}) => ((name, lhs), id)) (Net.dest procs) |
|
202 |
|> partition_eq eq_snd |
|
203 |
|> map (fn ps => (#1 (#1 (hd ps)), map (#2 o #1) ps)) |
|
204 |
|> Library.sort_wrt #1}; |
|
205 |
||
206 |
||
11504 | 207 |
(* merge_mss *) (*NOTE: ignores mk_rews, termless and depth of 2nd mss*) |
10413 | 208 |
|
209 |
fun merge_mss |
|
210 |
(Mss {rules = rules1, congs = (congs1,weak1), procs = procs1, |
|
11504 | 211 |
bounds = bounds1, prems = prems1, mk_rews, termless, depth}, |
10413 | 212 |
Mss {rules = rules2, congs = (congs2,weak2), procs = procs2, |
213 |
bounds = bounds2, prems = prems2, ...}) = |
|
214 |
mk_mss |
|
215 |
(Net.merge (rules1, rules2, eq_rrule), |
|
216 |
(generic_merge (eq_cong o pairself snd) I I congs1 congs2, |
|
217 |
merge_lists weak1 weak2), |
|
218 |
Net.merge (procs1, procs2, eq_simproc), |
|
219 |
merge_lists bounds1 bounds2, |
|
220 |
generic_merge eq_prem I I prems1 prems2, |
|
11504 | 221 |
mk_rews, termless, depth); |
10413 | 222 |
|
223 |
||
224 |
(* add_simps *) |
|
225 |
||
226 |
fun mk_rrule2{thm,lhs,elhs,perm} = |
|
227 |
let val fo = Pattern.first_order (term_of elhs) orelse not(Pattern.pattern (term_of elhs)) |
|
228 |
in {thm=thm,lhs=lhs,elhs=elhs,fo=fo,perm=perm} end |
|
229 |
||
230 |
fun insert_rrule(mss as Mss {rules,...}, |
|
231 |
rrule as {thm,lhs,elhs,perm}) = |
|
232 |
(trace_thm false "Adding rewrite rule:" thm; |
|
233 |
let val rrule2 as {elhs,...} = mk_rrule2 rrule |
|
234 |
val rules' = Net.insert_term ((term_of elhs, rrule2), rules, eq_rrule) |
|
235 |
in upd_rules(mss,rules') end |
|
236 |
handle Net.INSERT => |
|
237 |
(prthm true "Ignoring duplicate rewrite rule:" thm; mss)); |
|
238 |
||
239 |
fun vperm (Var _, Var _) = true |
|
240 |
| vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t) |
|
241 |
| vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2) |
|
242 |
| vperm (t, u) = (t = u); |
|
243 |
||
244 |
fun var_perm (t, u) = |
|
245 |
vperm (t, u) andalso eq_set (term_varnames t, term_varnames u); |
|
246 |
||
247 |
(* FIXME: it seems that the conditions on extra variables are too liberal if |
|
248 |
prems are nonempty: does solving the prems really guarantee instantiation of |
|
249 |
all its Vars? Better: a dynamic check each time a rule is applied. |
|
250 |
*) |
|
251 |
fun rewrite_rule_extra_vars prems elhs erhs = |
|
252 |
not (term_varnames erhs subset foldl add_term_varnames (term_varnames elhs, prems)) |
|
253 |
orelse |
|
254 |
not ((term_tvars erhs) subset |
|
255 |
(term_tvars elhs union List.concat(map term_tvars prems))); |
|
256 |
||
257 |
(*Simple test for looping rewrite rules and stupid orientations*) |
|
258 |
fun reorient sign prems lhs rhs = |
|
259 |
rewrite_rule_extra_vars prems lhs rhs |
|
260 |
orelse |
|
261 |
is_Var (head_of lhs) |
|
262 |
orelse |
|
263 |
(exists (apl (lhs, Logic.occs)) (rhs :: prems)) |
|
264 |
orelse |
|
265 |
(null prems andalso |
|
266 |
Pattern.matches (#tsig (Sign.rep_sg sign)) (lhs, rhs)) |
|
267 |
(*the condition "null prems" is necessary because conditional rewrites |
|
268 |
with extra variables in the conditions may terminate although |
|
269 |
the rhs is an instance of the lhs. Example: ?m < ?n ==> f(?n) == f(?m)*) |
|
270 |
orelse |
|
271 |
(is_Const lhs andalso not(is_Const rhs)) |
|
272 |
||
273 |
fun decomp_simp thm = |
|
274 |
let val {sign, prop, ...} = rep_thm thm; |
|
275 |
val prems = Logic.strip_imp_prems prop; |
|
276 |
val concl = Drule.strip_imp_concl (cprop_of thm); |
|
277 |
val (lhs, rhs) = Drule.dest_equals concl handle TERM _ => |
|
278 |
raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm) |
|
279 |
val elhs = snd (Drule.dest_equals (cprop_of (Thm.eta_conversion lhs))); |
|
280 |
val elhs = if elhs=lhs then lhs else elhs (* try to share *) |
|
281 |
val erhs = Pattern.eta_contract (term_of rhs); |
|
282 |
val perm = var_perm (term_of elhs, erhs) andalso not (term_of elhs aconv erhs) |
|
283 |
andalso not (is_Var (term_of elhs)) |
|
284 |
in (sign, prems, term_of lhs, elhs, term_of rhs, perm) end; |
|
285 |
||
286 |
fun mk_eq_True (Mss{mk_rews={mk_eq_True,...},...}) thm = |
|
287 |
case mk_eq_True thm of |
|
288 |
None => [] |
|
289 |
| Some eq_True => let val (_,_,lhs,elhs,_,_) = decomp_simp eq_True |
|
290 |
in [{thm=eq_True, lhs=lhs, elhs=elhs, perm=false}] end; |
|
291 |
||
292 |
(* create the rewrite rule and possibly also the ==True variant, |
|
293 |
in case there are extra vars on the rhs *) |
|
294 |
fun rrule_eq_True(thm,lhs,elhs,rhs,mss,thm2) = |
|
295 |
let val rrule = {thm=thm, lhs=lhs, elhs=elhs, perm=false} |
|
296 |
in if (term_varnames rhs) subset (term_varnames lhs) andalso |
|
297 |
(term_tvars rhs) subset (term_tvars lhs) |
|
298 |
then [rrule] |
|
299 |
else mk_eq_True mss thm2 @ [rrule] |
|
300 |
end; |
|
301 |
||
302 |
fun mk_rrule mss thm = |
|
303 |
let val (_,prems,lhs,elhs,rhs,perm) = decomp_simp thm |
|
304 |
in if perm then [{thm=thm, lhs=lhs, elhs=elhs, perm=true}] else |
|
305 |
(* weak test for loops: *) |
|
306 |
if rewrite_rule_extra_vars prems lhs rhs orelse |
|
307 |
is_Var (term_of elhs) |
|
308 |
then mk_eq_True mss thm |
|
309 |
else rrule_eq_True(thm,lhs,elhs,rhs,mss,thm) |
|
310 |
end; |
|
311 |
||
312 |
fun orient_rrule mss thm = |
|
313 |
let val (sign,prems,lhs,elhs,rhs,perm) = decomp_simp thm |
|
314 |
in if perm then [{thm=thm,lhs=lhs,elhs=elhs,perm=true}] |
|
315 |
else if reorient sign prems lhs rhs |
|
316 |
then if reorient sign prems rhs lhs |
|
317 |
then mk_eq_True mss thm |
|
318 |
else let val Mss{mk_rews={mk_sym,...},...} = mss |
|
319 |
in case mk_sym thm of |
|
320 |
None => [] |
|
321 |
| Some thm' => |
|
322 |
let val (_,_,lhs',elhs',rhs',_) = decomp_simp thm' |
|
323 |
in rrule_eq_True(thm',lhs',elhs',rhs',mss,thm) end |
|
324 |
end |
|
325 |
else rrule_eq_True(thm,lhs,elhs,rhs,mss,thm) |
|
326 |
end; |
|
327 |
||
328 |
fun extract_rews(Mss{mk_rews = {mk,...},...},thms) = flat(map mk thms); |
|
329 |
||
330 |
fun orient_comb_simps comb mk_rrule (mss,thms) = |
|
331 |
let val rews = extract_rews(mss,thms) |
|
332 |
val rrules = flat (map mk_rrule rews) |
|
333 |
in foldl comb (mss,rrules) end |
|
334 |
||
335 |
(* Add rewrite rules explicitly; do not reorient! *) |
|
336 |
fun add_simps(mss,thms) = |
|
337 |
orient_comb_simps insert_rrule (mk_rrule mss) (mss,thms); |
|
338 |
||
339 |
fun mss_of thms = |
|
340 |
foldl insert_rrule (empty_mss, flat(map (mk_rrule empty_mss) thms)); |
|
341 |
||
342 |
fun extract_safe_rrules(mss,thm) = |
|
343 |
flat (map (orient_rrule mss) (extract_rews(mss,[thm]))); |
|
344 |
||
345 |
fun add_safe_simp(mss,thm) = |
|
346 |
foldl insert_rrule (mss, extract_safe_rrules(mss,thm)) |
|
347 |
||
348 |
(* del_simps *) |
|
349 |
||
350 |
fun del_rrule(mss as Mss {rules,...}, |
|
351 |
rrule as {thm, elhs, ...}) = |
|
352 |
(upd_rules(mss, Net.delete_term ((term_of elhs, rrule), rules, eq_rrule)) |
|
353 |
handle Net.DELETE => |
|
354 |
(prthm true "Rewrite rule not in simpset:" thm; mss)); |
|
355 |
||
356 |
fun del_simps(mss,thms) = |
|
357 |
orient_comb_simps del_rrule (map mk_rrule2 o mk_rrule mss) (mss,thms); |
|
358 |
||
359 |
||
360 |
(* add_congs *) |
|
361 |
||
362 |
fun is_full_cong_prems [] varpairs = null varpairs |
|
363 |
| is_full_cong_prems (p::prems) varpairs = |
|
364 |
(case Logic.strip_assums_concl p of |
|
365 |
Const("==",_) $ lhs $ rhs => |
|
366 |
let val (x,xs) = strip_comb lhs and (y,ys) = strip_comb rhs |
|
367 |
in is_Var x andalso forall is_Bound xs andalso |
|
368 |
null(findrep(xs)) andalso xs=ys andalso |
|
369 |
(x,y) mem varpairs andalso |
|
370 |
is_full_cong_prems prems (varpairs\(x,y)) |
|
371 |
end |
|
372 |
| _ => false); |
|
373 |
||
374 |
fun is_full_cong thm = |
|
375 |
let val prems = prems_of thm |
|
376 |
and concl = concl_of thm |
|
377 |
val (lhs,rhs) = Logic.dest_equals concl |
|
378 |
val (f,xs) = strip_comb lhs |
|
379 |
and (g,ys) = strip_comb rhs |
|
380 |
in |
|
381 |
f=g andalso null(findrep(xs@ys)) andalso length xs = length ys andalso |
|
382 |
is_full_cong_prems prems (xs ~~ ys) |
|
383 |
end |
|
384 |
||
11504 | 385 |
fun add_cong (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thm) = |
10413 | 386 |
let |
387 |
val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (cprop_of thm)) handle TERM _ => |
|
388 |
raise SIMPLIFIER ("Congruence not a meta-equality", thm); |
|
389 |
(* val lhs = Pattern.eta_contract lhs; *) |
|
390 |
val (a, _) = dest_Const (head_of (term_of lhs)) handle TERM _ => |
|
391 |
raise SIMPLIFIER ("Congruence must start with a constant", thm); |
|
392 |
val (alist,weak) = congs |
|
393 |
val alist2 = overwrite_warn (alist, (a,{lhs=lhs, thm=thm})) |
|
394 |
("Overwriting congruence rule for " ^ quote a); |
|
395 |
val weak2 = if is_full_cong thm then weak else a::weak |
|
396 |
in |
|
11504 | 397 |
mk_mss (rules,(alist2,weak2),procs,bounds,prems,mk_rews,termless,depth) |
10413 | 398 |
end; |
399 |
||
400 |
val (op add_congs) = foldl add_cong; |
|
401 |
||
402 |
||
403 |
(* del_congs *) |
|
404 |
||
11504 | 405 |
fun del_cong (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thm) = |
10413 | 406 |
let |
407 |
val (lhs, _) = Logic.dest_equals (concl_of thm) handle TERM _ => |
|
408 |
raise SIMPLIFIER ("Congruence not a meta-equality", thm); |
|
409 |
(* val lhs = Pattern.eta_contract lhs; *) |
|
410 |
val (a, _) = dest_Const (head_of lhs) handle TERM _ => |
|
411 |
raise SIMPLIFIER ("Congruence must start with a constant", thm); |
|
412 |
val (alist,_) = congs |
|
413 |
val alist2 = filter (fn (x,_)=> x<>a) alist |
|
414 |
val weak2 = mapfilter (fn(a,{thm,...}) => if is_full_cong thm then None |
|
415 |
else Some a) |
|
416 |
alist2 |
|
417 |
in |
|
11504 | 418 |
mk_mss (rules,(alist2,weak2),procs,bounds,prems,mk_rews,termless,depth) |
10413 | 419 |
end; |
420 |
||
421 |
val (op del_congs) = foldl del_cong; |
|
422 |
||
423 |
||
424 |
(* add_simprocs *) |
|
425 |
||
11504 | 426 |
fun add_proc (mss as Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, |
10413 | 427 |
(name, lhs, proc, id)) = |
428 |
let val {sign, t, ...} = rep_cterm lhs |
|
429 |
in (trace_term false ("Adding simplification procedure " ^ quote name ^ " for") |
|
430 |
sign t; |
|
431 |
mk_mss (rules, congs, |
|
432 |
Net.insert_term ((t, mk_simproc (name, proc, lhs, id)), procs, eq_simproc) |
|
433 |
handle Net.INSERT => |
|
434 |
(warning ("Ignoring duplicate simplification procedure \"" |
|
435 |
^ name ^ "\""); |
|
436 |
procs), |
|
11504 | 437 |
bounds, prems, mk_rews, termless,depth)) |
10413 | 438 |
end; |
439 |
||
440 |
fun add_simproc (mss, (name, lhss, proc, id)) = |
|
441 |
foldl add_proc (mss, map (fn lhs => (name, lhs, proc, id)) lhss); |
|
442 |
||
443 |
val add_simprocs = foldl add_simproc; |
|
444 |
||
445 |
||
446 |
(* del_simprocs *) |
|
447 |
||
11504 | 448 |
fun del_proc (mss as Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, |
10413 | 449 |
(name, lhs, proc, id)) = |
450 |
mk_mss (rules, congs, |
|
451 |
Net.delete_term ((term_of lhs, mk_simproc (name, proc, lhs, id)), procs, eq_simproc) |
|
452 |
handle Net.DELETE => |
|
453 |
(warning ("Simplification procedure \"" ^ name ^ |
|
454 |
"\" not in simpset"); procs), |
|
11504 | 455 |
bounds, prems, mk_rews, termless, depth); |
10413 | 456 |
|
457 |
fun del_simproc (mss, (name, lhss, proc, id)) = |
|
458 |
foldl del_proc (mss, map (fn lhs => (name, lhs, proc, id)) lhss); |
|
459 |
||
460 |
val del_simprocs = foldl del_simproc; |
|
461 |
||
462 |
||
463 |
(* prems *) |
|
464 |
||
11504 | 465 |
fun add_prems (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thms) = |
466 |
mk_mss (rules, congs, procs, bounds, thms @ prems, mk_rews, termless, depth); |
|
10413 | 467 |
|
468 |
fun prems_of_mss (Mss {prems, ...}) = prems; |
|
469 |
||
470 |
||
471 |
(* mk_rews *) |
|
472 |
||
473 |
fun set_mk_rews |
|
11504 | 474 |
(Mss {rules, congs, procs, bounds, prems, mk_rews, termless, depth}, mk) = |
10413 | 475 |
mk_mss (rules, congs, procs, bounds, prems, |
476 |
{mk=mk, mk_sym= #mk_sym mk_rews, mk_eq_True= #mk_eq_True mk_rews}, |
|
11504 | 477 |
termless, depth); |
10413 | 478 |
|
479 |
fun set_mk_sym |
|
11504 | 480 |
(Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, mk_sym) = |
10413 | 481 |
mk_mss (rules, congs, procs, bounds, prems, |
482 |
{mk= #mk mk_rews, mk_sym= mk_sym, mk_eq_True= #mk_eq_True mk_rews}, |
|
11504 | 483 |
termless,depth); |
10413 | 484 |
|
485 |
fun set_mk_eq_True |
|
11504 | 486 |
(Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, mk_eq_True) = |
10413 | 487 |
mk_mss (rules, congs, procs, bounds, prems, |
488 |
{mk= #mk mk_rews, mk_sym= #mk_sym mk_rews, mk_eq_True= mk_eq_True}, |
|
11504 | 489 |
termless,depth); |
10413 | 490 |
|
491 |
(* termless *) |
|
492 |
||
493 |
fun set_termless |
|
11504 | 494 |
(Mss {rules, congs, procs, bounds, prems, mk_rews, depth, ...}, termless) = |
495 |
mk_mss (rules, congs, procs, bounds, prems, mk_rews, termless, depth); |
|
10413 | 496 |
|
497 |
||
498 |
||
499 |
(** rewriting **) |
|
500 |
||
501 |
(* |
|
502 |
Uses conversions, see: |
|
503 |
L C Paulson, A higher-order implementation of rewriting, |
|
504 |
Science of Computer Programming 3 (1983), pages 119-149. |
|
505 |
*) |
|
506 |
||
507 |
type prover = meta_simpset -> thm -> thm option; |
|
508 |
type termrec = (Sign.sg_ref * term list) * term; |
|
509 |
type conv = meta_simpset -> termrec -> termrec; |
|
510 |
||
511 |
val dest_eq = Drule.dest_equals o cprop_of; |
|
512 |
val lhs_of = fst o dest_eq; |
|
513 |
val rhs_of = snd o dest_eq; |
|
514 |
||
515 |
fun beta_eta_conversion t = |
|
516 |
let val thm = beta_conversion true t; |
|
517 |
in transitive thm (eta_conversion (rhs_of thm)) end; |
|
518 |
||
519 |
fun check_conv msg thm thm' = |
|
520 |
let |
|
521 |
val thm'' = transitive thm (transitive |
|
522 |
(symmetric (beta_eta_conversion (lhs_of thm'))) thm') |
|
523 |
in (if msg then trace_thm false "SUCCEEDED" thm' else (); Some thm'') end |
|
524 |
handle THM _ => |
|
525 |
let val {sign, prop = _ $ _ $ prop0, ...} = rep_thm thm; |
|
526 |
in |
|
527 |
(trace_thm false "Proved wrong thm (Check subgoaler?)" thm'; |
|
528 |
trace_term false "Should have proved:" sign prop0; |
|
529 |
None) |
|
530 |
end; |
|
531 |
||
532 |
||
533 |
(* mk_procrule *) |
|
534 |
||
535 |
fun mk_procrule thm = |
|
536 |
let val (_,prems,lhs,elhs,rhs,_) = decomp_simp thm |
|
537 |
in if rewrite_rule_extra_vars prems lhs rhs |
|
538 |
then (prthm true "Extra vars on rhs:" thm; []) |
|
539 |
else [mk_rrule2{thm=thm, lhs=lhs, elhs=elhs, perm=false}] |
|
540 |
end; |
|
541 |
||
542 |
||
543 |
(* conversion to apply the meta simpset to a term *) |
|
544 |
||
545 |
(* Since the rewriting strategy is bottom-up, we avoid re-normalizing already |
|
546 |
normalized terms by carrying around the rhs of the rewrite rule just |
|
547 |
applied. This is called the `skeleton'. It is decomposed in parallel |
|
548 |
with the term. Once a Var is encountered, the corresponding term is |
|
549 |
already in normal form. |
|
550 |
skel0 is a dummy skeleton that is to enforce complete normalization. |
|
551 |
*) |
|
552 |
val skel0 = Bound 0; |
|
553 |
||
554 |
(* Use rhs as skeleton only if the lhs does not contain unnormalized bits. |
|
555 |
The latter may happen iff there are weak congruence rules for constants |
|
556 |
in the lhs. |
|
557 |
*) |
|
558 |
fun uncond_skel((_,weak),(lhs,rhs)) = |
|
559 |
if null weak then rhs (* optimization *) |
|
560 |
else if exists_Const (fn (c,_) => c mem weak) lhs then skel0 |
|
561 |
else rhs; |
|
562 |
||
563 |
(* Behaves like unconditional rule if rhs does not contain vars not in the lhs. |
|
564 |
Otherwise those vars may become instantiated with unnormalized terms |
|
565 |
while the premises are solved. |
|
566 |
*) |
|
567 |
fun cond_skel(args as (congs,(lhs,rhs))) = |
|
568 |
if term_varnames rhs subset term_varnames lhs then uncond_skel(args) |
|
569 |
else skel0; |
|
570 |
||
571 |
(* |
|
572 |
we try in order: |
|
573 |
(1) beta reduction |
|
574 |
(2) unconditional rewrite rules |
|
575 |
(3) conditional rewrite rules |
|
576 |
(4) simplification procedures |
|
577 |
||
578 |
IMPORTANT: rewrite rules must not introduce new Vars or TVars! |
|
579 |
||
580 |
*) |
|
581 |
||
582 |
fun rewritec (prover, signt, maxt) |
|
11504 | 583 |
(mss as Mss{rules, procs, termless, prems, congs, depth,...}) t = |
10413 | 584 |
let |
585 |
val eta_thm = Thm.eta_conversion t; |
|
586 |
val eta_t' = rhs_of eta_thm; |
|
587 |
val eta_t = term_of eta_t'; |
|
588 |
val tsigt = Sign.tsig_of signt; |
|
589 |
fun rew {thm, lhs, elhs, fo, perm} = |
|
590 |
let |
|
591 |
val {sign, prop, maxidx, ...} = rep_thm thm; |
|
592 |
val _ = if Sign.subsig (sign, signt) then () |
|
593 |
else (prthm true "Ignoring rewrite rule from different theory:" thm; |
|
594 |
raise Pattern.MATCH); |
|
595 |
val (rthm, elhs') = if maxt = ~1 then (thm, elhs) |
|
596 |
else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs); |
|
597 |
val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t') |
|
598 |
else Thm.cterm_match (elhs', eta_t'); |
|
599 |
val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm); |
|
600 |
val prop' = #prop (rep_thm thm'); |
|
601 |
val unconditional = (Logic.count_prems (prop',0) = 0); |
|
602 |
val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop') |
|
603 |
in |
|
11295 | 604 |
if perm andalso not (termless (rhs', lhs')) |
605 |
then (trace_thm false "Cannot apply permutative rewrite rule:" thm; |
|
606 |
trace_thm false "Term does not become smaller:" thm'; None) |
|
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
607 |
else (trace_thm false "Applying instance of rewrite rule:" thm; |
10413 | 608 |
if unconditional |
609 |
then |
|
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
610 |
(trace_thm false "Rewriting:" thm'; |
10413 | 611 |
let val lr = Logic.dest_equals prop; |
612 |
val Some thm'' = check_conv false eta_thm thm' |
|
613 |
in Some (thm'', uncond_skel (congs, lr)) end) |
|
614 |
else |
|
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
615 |
(trace_thm false "Trying to rewrite:" thm'; |
11504 | 616 |
case prover (incr_depth mss) thm' of |
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
617 |
None => (trace_thm false "FAILED" thm'; None) |
10413 | 618 |
| Some thm2 => |
619 |
(case check_conv true eta_thm thm2 of |
|
620 |
None => None | |
|
621 |
Some thm2' => |
|
622 |
let val concl = Logic.strip_imp_concl prop |
|
623 |
val lr = Logic.dest_equals concl |
|
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
624 |
in Some (thm2', cond_skel (congs, lr)) end))) |
10413 | 625 |
end |
626 |
||
627 |
fun rews [] = None |
|
628 |
| rews (rrule :: rrules) = |
|
629 |
let val opt = rew rrule handle Pattern.MATCH => None |
|
630 |
in case opt of None => rews rrules | some => some end; |
|
631 |
||
632 |
fun sort_rrules rrs = let |
|
633 |
fun is_simple({thm, ...}:rrule) = case #prop (rep_thm thm) of |
|
634 |
Const("==",_) $ _ $ _ => true |
|
635 |
| _ => false |
|
636 |
fun sort [] (re1,re2) = re1 @ re2 |
|
637 |
| sort (rr::rrs) (re1,re2) = if is_simple rr |
|
638 |
then sort rrs (rr::re1,re2) |
|
639 |
else sort rrs (re1,rr::re2) |
|
640 |
in sort rrs ([],[]) end |
|
641 |
||
642 |
fun proc_rews ([]:simproc list) = None |
|
643 |
| proc_rews ({name, proc, lhs, ...} :: ps) = |
|
644 |
if Pattern.matches tsigt (term_of lhs, term_of t) then |
|
645 |
(debug_term false ("Trying procedure " ^ quote name ^ " on:") signt eta_t; |
|
646 |
case proc signt prems eta_t of |
|
647 |
None => (debug false "FAILED"; proc_rews ps) |
|
648 |
| Some raw_thm => |
|
649 |
(trace_thm false ("Procedure " ^ quote name ^ " produced rewrite rule:") raw_thm; |
|
650 |
(case rews (mk_procrule raw_thm) of |
|
11291 | 651 |
None => (trace_cterm false "IGNORED - does not match" t; proc_rews ps) |
10413 | 652 |
| some => some))) |
653 |
else proc_rews ps; |
|
654 |
in case eta_t of |
|
655 |
Abs _ $ _ => Some (transitive eta_thm |
|
656 |
(beta_conversion false (rhs_of eta_thm)), skel0) |
|
657 |
| _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of |
|
658 |
None => proc_rews (Net.match_term procs eta_t) |
|
659 |
| some => some) |
|
660 |
end; |
|
661 |
||
662 |
||
663 |
(* conversion to apply a congruence rule to a term *) |
|
664 |
||
665 |
fun congc (prover,signt,maxt) {thm=cong,lhs=lhs} t = |
|
666 |
let val {sign, ...} = rep_thm cong |
|
667 |
val _ = if Sign.subsig (sign, signt) then () |
|
668 |
else error("Congruence rule from different theory") |
|
669 |
val rthm = if maxt = ~1 then cong else Thm.incr_indexes (maxt+1) cong; |
|
670 |
val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm))); |
|
671 |
val insts = Thm.cterm_match (rlhs, t) |
|
672 |
(* Pattern.match can raise Pattern.MATCH; |
|
673 |
is handled when congc is called *) |
|
674 |
val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm); |
|
675 |
val unit = trace_thm false "Applying congruence rule:" thm'; |
|
676 |
fun err (msg, thm) = (prthm false msg thm; error "Failed congruence proof!") |
|
677 |
in case prover thm' of |
|
678 |
None => err ("Could not prove", thm') |
|
679 |
| Some thm2 => (case check_conv true (beta_eta_conversion t) thm2 of |
|
680 |
None => err ("Should not have proved", thm2) |
|
681 |
| Some thm2' => thm2') |
|
682 |
end; |
|
683 |
||
684 |
val (cA, (cB, cC)) = |
|
685 |
apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong))); |
|
686 |
||
687 |
fun transitive' thm1 None = Some thm1 |
|
688 |
| transitive' thm1 (Some thm2) = Some (transitive thm1 thm2); |
|
689 |
||
690 |
fun bottomc ((simprem,useprem,mutsimp), prover, sign, maxidx) = |
|
691 |
let |
|
692 |
fun botc skel mss t = |
|
693 |
if is_Var skel then None |
|
694 |
else |
|
695 |
(case subc skel mss t of |
|
696 |
some as Some thm1 => |
|
697 |
(case rewritec (prover, sign, maxidx) mss (rhs_of thm1) of |
|
698 |
Some (thm2, skel2) => |
|
699 |
transitive' (transitive thm1 thm2) |
|
700 |
(botc skel2 mss (rhs_of thm2)) |
|
701 |
| None => some) |
|
702 |
| None => |
|
703 |
(case rewritec (prover, sign, maxidx) mss t of |
|
704 |
Some (thm2, skel2) => transitive' thm2 |
|
705 |
(botc skel2 mss (rhs_of thm2)) |
|
706 |
| None => None)) |
|
707 |
||
708 |
and try_botc mss t = |
|
709 |
(case botc skel0 mss t of |
|
710 |
Some trec1 => trec1 | None => (reflexive t)) |
|
711 |
||
712 |
and subc skel |
|
11504 | 713 |
(mss as Mss{rules,congs,procs,bounds,prems,mk_rews,termless,depth}) t0 = |
10413 | 714 |
(case term_of t0 of |
715 |
Abs (a, T, t) => |
|
716 |
let val b = variant bounds a |
|
10767
8fa4aafa7314
Thm: dest_comb, dest_abs, capply, cabs no longer global;
wenzelm
parents:
10413
diff
changeset
|
717 |
val (v, t') = Thm.dest_abs (Some ("." ^ b)) t0 |
11504 | 718 |
val mss' = mk_mss (rules, congs, procs, b :: bounds, prems, mk_rews, termless,depth) |
10413 | 719 |
val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0 |
720 |
in case botc skel' mss' t' of |
|
721 |
Some thm => Some (abstract_rule a v thm) |
|
722 |
| None => None |
|
723 |
end |
|
724 |
| t $ _ => (case t of |
|
725 |
Const ("==>", _) $ _ => |
|
726 |
let val (s, u) = Drule.dest_implies t0 |
|
727 |
in impc (s, u, mss) end |
|
728 |
| Abs _ => |
|
729 |
let val thm = beta_conversion false t0 |
|
730 |
in case subc skel0 mss (rhs_of thm) of |
|
731 |
None => Some thm |
|
732 |
| Some thm' => Some (transitive thm thm') |
|
733 |
end |
|
734 |
| _ => |
|
735 |
let fun appc () = |
|
736 |
let |
|
737 |
val (tskel, uskel) = case skel of |
|
738 |
tskel $ uskel => (tskel, uskel) |
|
739 |
| _ => (skel0, skel0); |
|
10767
8fa4aafa7314
Thm: dest_comb, dest_abs, capply, cabs no longer global;
wenzelm
parents:
10413
diff
changeset
|
740 |
val (ct, cu) = Thm.dest_comb t0 |
10413 | 741 |
in |
742 |
(case botc tskel mss ct of |
|
743 |
Some thm1 => |
|
744 |
(case botc uskel mss cu of |
|
745 |
Some thm2 => Some (combination thm1 thm2) |
|
746 |
| None => Some (combination thm1 (reflexive cu))) |
|
747 |
| None => |
|
748 |
(case botc uskel mss cu of |
|
749 |
Some thm1 => Some (combination (reflexive ct) thm1) |
|
750 |
| None => None)) |
|
751 |
end |
|
752 |
val (h, ts) = strip_comb t |
|
753 |
in case h of |
|
754 |
Const(a, _) => |
|
755 |
(case assoc_string (fst congs, a) of |
|
756 |
None => appc () |
|
757 |
| Some cong => |
|
758 |
(* post processing: some partial applications h t1 ... tj, j <= length ts, |
|
759 |
may be a redex. Example: map (%x.x) = (%xs.xs) wrt map_cong *) |
|
760 |
(let |
|
761 |
val thm = congc (prover mss, sign, maxidx) cong t0; |
|
762 |
val t = rhs_of thm; |
|
10767
8fa4aafa7314
Thm: dest_comb, dest_abs, capply, cabs no longer global;
wenzelm
parents:
10413
diff
changeset
|
763 |
val (cl, cr) = Thm.dest_comb t |
10413 | 764 |
val dVar = Var(("", 0), dummyT) |
765 |
val skel = |
|
766 |
list_comb (h, replicate (length ts) dVar) |
|
767 |
in case botc skel mss cl of |
|
768 |
None => Some thm |
|
769 |
| Some thm' => Some (transitive thm |
|
770 |
(combination thm' (reflexive cr))) |
|
771 |
end handle TERM _ => error "congc result" |
|
772 |
| Pattern.MATCH => appc ())) |
|
773 |
| _ => appc () |
|
774 |
end) |
|
775 |
| _ => None) |
|
776 |
||
777 |
and impc args = |
|
778 |
if mutsimp |
|
779 |
then let val (prem, conc, mss) = args |
|
780 |
in apsome snd (mut_impc ([], prem, conc, mss)) end |
|
781 |
else nonmut_impc args |
|
782 |
||
783 |
and mut_impc (prems, prem, conc, mss) = (case botc skel0 mss prem of |
|
784 |
None => mut_impc1 (prems, prem, conc, mss) |
|
785 |
| Some thm1 => |
|
786 |
let val prem1 = rhs_of thm1 |
|
787 |
in (case mut_impc1 (prems, prem1, conc, mss) of |
|
788 |
None => Some (None, |
|
789 |
combination (combination refl_implies thm1) (reflexive conc)) |
|
790 |
| Some (x, thm2) => Some (x, transitive (combination (combination |
|
791 |
refl_implies thm1) (reflexive conc)) thm2)) |
|
792 |
end) |
|
793 |
||
794 |
and mut_impc1 (prems, prem1, conc, mss) = |
|
795 |
let |
|
796 |
fun uncond ({thm, lhs, elhs, perm}) = |
|
797 |
if Thm.no_prems thm then Some lhs else None |
|
798 |
||
799 |
val (lhss1, mss1) = |
|
800 |
if maxidx_of_term (term_of prem1) <> ~1 |
|
801 |
then (trace_cterm true |
|
802 |
"Cannot add premise as rewrite rule because it contains (type) unknowns:" prem1; |
|
803 |
([],mss)) |
|
804 |
else let val thm = assume prem1 |
|
805 |
val rrules1 = extract_safe_rrules (mss, thm) |
|
806 |
val lhss1 = mapfilter uncond rrules1 |
|
807 |
val mss1 = foldl insert_rrule (add_prems (mss, [thm]), rrules1) |
|
808 |
in (lhss1, mss1) end |
|
809 |
||
810 |
fun disch1 thm = |
|
811 |
let val (cB', cC') = dest_eq thm |
|
812 |
in |
|
813 |
implies_elim (Thm.instantiate |
|
814 |
([], [(cA, prem1), (cB, cB'), (cC, cC')]) Drule.imp_cong) |
|
815 |
(implies_intr prem1 thm) |
|
816 |
end |
|
817 |
||
818 |
fun rebuild None = (case rewritec (prover, sign, maxidx) mss |
|
819 |
(mk_implies (prem1, conc)) of |
|
820 |
None => None |
|
11371 | 821 |
| Some (thm, _) => |
822 |
let val (prem, conc) = Drule.dest_implies (rhs_of thm) |
|
823 |
in (case mut_impc (prems, prem, conc, mss) of |
|
824 |
None => Some (None, thm) |
|
825 |
| Some (x, thm') => Some (x, transitive thm thm')) |
|
826 |
end handle TERM _ => Some (None, thm)) |
|
10413 | 827 |
| rebuild (Some thm2) = |
828 |
let val thm = disch1 thm2 |
|
829 |
in (case rewritec (prover, sign, maxidx) mss (rhs_of thm) of |
|
830 |
None => Some (None, thm) |
|
831 |
| Some (thm', _) => |
|
832 |
let val (prem, conc) = Drule.dest_implies (rhs_of thm') |
|
833 |
in (case mut_impc (prems, prem, conc, mss) of |
|
834 |
None => Some (None, transitive thm thm') |
|
835 |
| Some (x, thm'') => |
|
836 |
Some (x, transitive (transitive thm thm') thm'')) |
|
837 |
end handle TERM _ => Some (None, transitive thm thm')) |
|
838 |
end |
|
839 |
||
840 |
fun simpconc () = |
|
841 |
let val (s, t) = Drule.dest_implies conc |
|
842 |
in case mut_impc (prems @ [prem1], s, t, mss1) of |
|
843 |
None => rebuild None |
|
844 |
| Some (Some i, thm2) => |
|
845 |
let |
|
846 |
val (prem, cC') = Drule.dest_implies (rhs_of thm2); |
|
847 |
val thm2' = transitive (disch1 thm2) (Thm.instantiate |
|
848 |
([], [(cA, prem1), (cB, prem), (cC, cC')]) |
|
849 |
Drule.swap_prems_eq) |
|
850 |
in if i=0 then apsome (apsnd (transitive thm2')) |
|
851 |
(mut_impc1 (prems, prem, mk_implies (prem1, cC'), mss)) |
|
852 |
else Some (Some (i-1), thm2') |
|
853 |
end |
|
854 |
| Some (None, thm) => rebuild (Some thm) |
|
855 |
end handle TERM _ => rebuild (botc skel0 mss1 conc) |
|
856 |
||
857 |
in |
|
858 |
let |
|
859 |
val tsig = Sign.tsig_of sign |
|
860 |
fun reducible t = |
|
861 |
exists (fn lhs => Pattern.matches_subterm tsig (lhs, term_of t)) lhss1; |
|
862 |
in case dropwhile (not o reducible) prems of |
|
863 |
[] => simpconc () |
|
864 |
| red::rest => (trace_cterm false "Can now reduce premise:" red; |
|
865 |
Some (Some (length rest), reflexive (mk_implies (prem1, conc)))) |
|
866 |
end |
|
867 |
end |
|
868 |
||
869 |
(* legacy code - only for backwards compatibility *) |
|
870 |
and nonmut_impc (prem, conc, mss) = |
|
871 |
let val thm1 = if simprem then botc skel0 mss prem else None; |
|
872 |
val prem1 = if_none (apsome rhs_of thm1) prem; |
|
873 |
val maxidx1 = maxidx_of_term (term_of prem1) |
|
874 |
val mss1 = |
|
875 |
if not useprem then mss else |
|
876 |
if maxidx1 <> ~1 |
|
877 |
then (trace_cterm true |
|
878 |
"Cannot add premise as rewrite rule because it contains (type) unknowns:" prem1; |
|
879 |
mss) |
|
880 |
else let val thm = assume prem1 |
|
881 |
in add_safe_simp (add_prems (mss, [thm]), thm) end |
|
882 |
in (case botc skel0 mss1 conc of |
|
883 |
None => (case thm1 of |
|
884 |
None => None |
|
885 |
| Some thm1' => Some (combination |
|
886 |
(combination refl_implies thm1') (reflexive conc))) |
|
887 |
| Some thm2 => |
|
888 |
let |
|
889 |
val conc2 = rhs_of thm2; |
|
890 |
val thm2' = implies_elim (Thm.instantiate |
|
891 |
([], [(cA, prem1), (cB, conc), (cC, conc2)]) Drule.imp_cong) |
|
892 |
(implies_intr prem1 thm2) |
|
893 |
in (case thm1 of |
|
894 |
None => Some thm2' |
|
895 |
| Some thm1' => Some (transitive (combination |
|
896 |
(combination refl_implies thm1') (reflexive conc)) thm2')) |
|
897 |
end) |
|
898 |
end |
|
899 |
||
900 |
in try_botc end; |
|
901 |
||
902 |
||
903 |
(*** Meta-rewriting: rewrites t to u and returns the theorem t==u ***) |
|
904 |
||
905 |
(* |
|
906 |
Parameters: |
|
907 |
mode = (simplify A, |
|
908 |
use A in simplifying B, |
|
909 |
use prems of B (if B is again a meta-impl.) to simplify A) |
|
910 |
when simplifying A ==> B |
|
911 |
mss: contains equality theorems of the form [|p1,...|] ==> t==u |
|
912 |
prover: how to solve premises in conditional rewrites and congruences |
|
913 |
*) |
|
914 |
||
915 |
fun rewrite_cterm mode prover mss ct = |
|
916 |
let val {sign, t, maxidx, ...} = rep_cterm ct |
|
11505
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
917 |
val Mss{depth, ...} = mss |
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
918 |
in simp_depth := depth; |
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
919 |
bottomc (mode, prover, sign, maxidx) mss ct |
a410fa8acfca
Implemented indentation schema for conditional rewrite trace.
nipkow
parents:
11504
diff
changeset
|
920 |
end |
10413 | 921 |
handle THM (s, _, thms) => |
922 |
error ("Exception THM was raised in simplifier:\n" ^ s ^ "\n" ^ |
|
923 |
Pretty.string_of (pretty_thms thms)); |
|
924 |
||
925 |
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*) |
|
926 |
(*Do not rewrite flex-flex pairs*) |
|
927 |
fun goals_conv pred cv = |
|
928 |
let fun gconv i ct = |
|
929 |
let val (A,B) = Drule.dest_implies ct |
|
930 |
val (thA,j) = case term_of A of |
|
931 |
Const("=?=",_)$_$_ => (reflexive A, i) |
|
932 |
| _ => (if pred i then cv A else reflexive A, i+1) |
|
933 |
in combination (combination refl_implies thA) (gconv j B) end |
|
934 |
handle TERM _ => reflexive ct |
|
935 |
in gconv 1 end; |
|
936 |
||
11737 | 937 |
(* Rewrite A in !!x1,...,xn. A *) |
11736 | 938 |
fun forall_conv cv ct = |
939 |
let val p as (ct1, ct2) = Thm.dest_comb ct |
|
940 |
in (case pairself term_of p of |
|
941 |
(Const ("all", _), Abs (s, _, _)) => |
|
942 |
let val (v, ct') = Thm.dest_abs (Some "@") ct2; |
|
943 |
in Thm.combination (Thm.reflexive ct1) |
|
944 |
(Thm.abstract_rule s v (forall_conv cv ct')) |
|
945 |
end |
|
946 |
| _ => cv ct) |
|
947 |
end handle TERM _ => cv ct; |
|
948 |
||
10413 | 949 |
(*Use a conversion to transform a theorem*) |
950 |
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th; |
|
951 |
||
11672 | 952 |
(*Rewrite a cterm (yielding again a cterm instead of a theorem)*) |
953 |
fun full_rewrite_cterm_aux _ [] = (fn ct => ct) |
|
954 |
| full_rewrite_cterm_aux prover thms = |
|
955 |
#2 o Thm.dest_comb o #prop o Thm.crep_thm o |
|
956 |
rewrite_cterm (true, false, false) prover (mss_of thms); |
|
957 |
||
10413 | 958 |
(*Rewrite a theorem*) |
959 |
fun rewrite_rule_aux _ [] = (fn th => th) |
|
960 |
| rewrite_rule_aux prover thms = |
|
961 |
fconv_rule (rewrite_cterm (true,false,false) prover (mss_of thms)); |
|
962 |
||
963 |
fun rewrite_thm mode prover mss = fconv_rule (rewrite_cterm mode prover mss); |
|
964 |
||
965 |
(*Rewrite the subgoals of a proof state (represented by a theorem) *) |
|
966 |
fun rewrite_goals_rule_aux _ [] th = th |
|
967 |
| rewrite_goals_rule_aux prover thms th = |
|
968 |
fconv_rule (goals_conv (K true) (rewrite_cterm (true, true, false) prover |
|
969 |
(mss_of thms))) th; |
|
970 |
||
971 |
(*Rewrite the subgoal of a proof state (represented by a theorem) *) |
|
972 |
fun rewrite_goal_rule mode prover mss i thm = |
|
973 |
if 0 < i andalso i <= nprems_of thm |
|
974 |
then fconv_rule (goals_conv (fn j => j=i) (rewrite_cterm mode prover mss)) thm |
|
975 |
else raise THM("rewrite_goal_rule",i,[thm]); |
|
976 |
||
977 |
end; |
|
978 |
||
11672 | 979 |
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier; |
980 |
open BasicMetaSimplifier; |