src/ZF/Constructible/Relative.thy
author paulson
Wed, 10 Jul 2002 16:54:07 +0200
changeset 13339 0f89104dd377
parent 13323 2c287f50c9f3
child 13348 374d05460db4
permissions -rw-r--r--
Fixed quantified variable name preservation for ball and bex (bounded quants) Requires tweaking of other scripts. Also routine tidying.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     1
header {*Relativization and Absoluteness*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     2
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     3
theory Relative = Main:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     4
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     5
subsection{* Relativized versions of standard set-theoretic concepts *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     6
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     7
constdefs
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     8
  empty :: "[i=>o,i] => o"
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
     9
    "empty(M,z) == \<forall>x[M]. x \<notin> z"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    10
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    11
  subset :: "[i=>o,i,i] => o"
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    12
    "subset(M,A,B) == \<forall>x[M]. x\<in>A --> x \<in> B"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    13
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    14
  upair :: "[i=>o,i,i,i] => o"
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    15
    "upair(M,a,b,z) == a \<in> z & b \<in> z & (\<forall>x[M]. x\<in>z --> x = a | x = b)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    16
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    17
  pair :: "[i=>o,i,i,i] => o"
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
    18
    "pair(M,a,b,z) == \<exists>x[M]. upair(M,a,a,x) & 
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
    19
                          (\<exists>y[M]. upair(M,a,b,y) & upair(M,x,y,z))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    20
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
    21
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
    22
  union :: "[i=>o,i,i,i] => o"
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
    23
    "union(M,a,b,z) == \<forall>x[M]. x \<in> z <-> x \<in> a | x \<in> b"
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
    24
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
    25
  is_cons :: "[i=>o,i,i,i] => o"
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
    26
    "is_cons(M,a,b,z) == \<exists>x[M]. upair(M,a,a,x) & union(M,x,b,z)"
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
    27
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    28
  successor :: "[i=>o,i,i] => o"
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
    29
    "successor(M,a,z) == is_cons(M,a,a,z)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    30
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    31
  powerset :: "[i=>o,i,i] => o"
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
    32
    "powerset(M,A,z) == \<forall>x[M]. x \<in> z <-> subset(M,x,A)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    33
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    34
  inter :: "[i=>o,i,i,i] => o"
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
    35
    "inter(M,a,b,z) == \<forall>x[M]. x \<in> z <-> x \<in> a & x \<in> b"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    36
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    37
  setdiff :: "[i=>o,i,i,i] => o"
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
    38
    "setdiff(M,a,b,z) == \<forall>x[M]. x \<in> z <-> x \<in> a & x \<notin> b"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    39
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    40
  big_union :: "[i=>o,i,i] => o"
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    41
    "big_union(M,A,z) == \<forall>x[M]. x \<in> z <-> (\<exists>y[M]. y\<in>A & x \<in> y)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    42
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    43
  big_inter :: "[i=>o,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    44
    "big_inter(M,A,z) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    45
             (A=0 --> z=0) &
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    46
	     (A\<noteq>0 --> (\<forall>x[M]. x \<in> z <-> (\<forall>y[M]. y\<in>A --> x \<in> y)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    47
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    48
  cartprod :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    49
    "cartprod(M,A,B,z) == 
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    50
	\<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    51
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    52
  is_converse :: "[i=>o,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    53
    "is_converse(M,r,z) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    54
	\<forall>x[M]. x \<in> z <-> 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    55
             (\<exists>w[M]. w\<in>r & (\<exists>u[M]. \<exists>v[M]. pair(M,u,v,w) & pair(M,v,u,x)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    56
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    57
  pre_image :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    58
    "pre_image(M,r,A,z) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    59
	\<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. y\<in>A & pair(M,x,y,w)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    60
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    61
  is_domain :: "[i=>o,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    62
    "is_domain(M,r,z) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    63
	\<forall>x[M]. (x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. pair(M,x,y,w))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    64
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    65
  image :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    66
    "image(M,r,A,z) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    67
        \<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,w))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    68
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    69
  is_range :: "[i=>o,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    70
    --{*the cleaner 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    71
      @{term "\<exists>r'[M]. is_converse(M,r,r') & is_domain(M,r',z)"}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    72
      unfortunately needs an instance of separation in order to prove 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    73
        @{term "M(converse(r))"}.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    74
    "is_range(M,r,z) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    75
	\<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. pair(M,x,y,w))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    76
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
    77
  is_field :: "[i=>o,i,i] => o"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
    78
    "is_field(M,r,z) == 
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    79
	\<exists>dr[M]. is_domain(M,r,dr) & 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    80
            (\<exists>rr[M]. is_range(M,r,rr) & union(M,dr,rr,z))"
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
    81
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    82
  is_relation :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    83
    "is_relation(M,r) == 
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
    84
        (\<forall>z[M]. z\<in>r --> (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,z)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    85
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    86
  is_function :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    87
    "is_function(M,r) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    88
	\<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M]. 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    89
           pair(M,x,y,p) --> pair(M,x,y',p') --> p\<in>r --> p'\<in>r --> y=y'"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    90
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    91
  fun_apply :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    92
    "fun_apply(M,f,x,y) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
    93
	(\<forall>y'[M]. (\<exists>u[M]. u\<in>f & pair(M,x,y',u)) <-> y=y')"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    94
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    95
  typed_function :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    96
    "typed_function(M,A,B,r) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    97
        is_function(M,r) & is_relation(M,r) & is_domain(M,r,A) &
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
    98
        (\<forall>u[M]. u\<in>r --> (\<forall>x[M]. \<forall>y[M]. pair(M,x,y,u) --> y\<in>B))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    99
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   100
  is_funspace :: "[i=>o,i,i,i] => o"
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   101
    "is_funspace(M,A,B,F) == 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   102
        \<forall>f[M]. f \<in> F <-> typed_function(M,A,B,f)"
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   103
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   104
  composition :: "[i=>o,i,i,i] => o"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   105
    "composition(M,r,s,t) == 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   106
        \<forall>p[M]. p \<in> t <-> 
13323
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   107
               (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M]. 
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   108
                pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) & 
2c287f50c9f3 More relativization, reflection and proofs of separation
paulson
parents: 13319
diff changeset
   109
                xy \<in> s & yz \<in> r)"
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   110
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   111
  injection :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   112
    "injection(M,A,B,f) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   113
	typed_function(M,A,B,f) &
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   114
        (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M]. 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   115
          pair(M,x,y,p) --> pair(M,x',y,p') --> p\<in>f --> p'\<in>f --> x=x')"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   116
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   117
  surjection :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   118
    "surjection(M,A,B,f) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   119
        typed_function(M,A,B,f) &
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   120
        (\<forall>y[M]. y\<in>B --> (\<exists>x[M]. x\<in>A & fun_apply(M,f,x,y)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   121
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   122
  bijection :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   123
    "bijection(M,A,B,f) == injection(M,A,B,f) & surjection(M,A,B,f)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   124
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   125
  restriction :: "[i=>o,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   126
    "restriction(M,r,A,z) == 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   127
	\<forall>x[M]. x \<in> z <-> (x \<in> r & (\<exists>u[M]. u\<in>A & (\<exists>v[M]. pair(M,u,v,x))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   128
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   129
  transitive_set :: "[i=>o,i] => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   130
    "transitive_set(M,a) == \<forall>x[M]. x\<in>a --> subset(M,x,a)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   131
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   132
  ordinal :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   133
     --{*an ordinal is a transitive set of transitive sets*}
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   134
    "ordinal(M,a) == transitive_set(M,a) & (\<forall>x[M]. x\<in>a --> transitive_set(M,x))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   135
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   136
  limit_ordinal :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   137
    --{*a limit ordinal is a non-empty, successor-closed ordinal*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   138
    "limit_ordinal(M,a) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   139
	ordinal(M,a) & ~ empty(M,a) & 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   140
        (\<forall>x[M]. x\<in>a --> (\<exists>y[M]. y\<in>a & successor(M,x,y)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   141
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   142
  successor_ordinal :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   143
    --{*a successor ordinal is any ordinal that is neither empty nor limit*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   144
    "successor_ordinal(M,a) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   145
	ordinal(M,a) & ~ empty(M,a) & ~ limit_ordinal(M,a)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   146
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   147
  finite_ordinal :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   148
    --{*an ordinal is finite if neither it nor any of its elements are limit*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   149
    "finite_ordinal(M,a) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   150
	ordinal(M,a) & ~ limit_ordinal(M,a) & 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   151
        (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   152
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   153
  omega :: "[i=>o,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   154
    --{*omega is a limit ordinal none of whose elements are limit*}
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   155
    "omega(M,a) == limit_ordinal(M,a) & (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   156
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   157
  number1 :: "[i=>o,i] => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   158
    "number1(M,a) == (\<exists>x[M]. empty(M,x) & successor(M,x,a))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   159
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   160
  number2 :: "[i=>o,i] => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   161
    "number2(M,a) == (\<exists>x[M]. number1(M,x) & successor(M,x,a))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   162
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   163
  number3 :: "[i=>o,i] => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   164
    "number3(M,a) == (\<exists>x[M]. number2(M,x) & successor(M,x,a))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   165
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   166
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   167
subsection {*The relativized ZF axioms*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   168
constdefs
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   169
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   170
  extensionality :: "(i=>o) => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   171
    "extensionality(M) == 
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   172
	\<forall>x[M]. \<forall>y[M]. (\<forall>z[M]. z \<in> x <-> z \<in> y) --> x=y"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   173
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   174
  separation :: "[i=>o, i=>o] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   175
    --{*Big problem: the formula @{text P} should only involve parameters
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   176
        belonging to @{text M}.  Don't see how to enforce that.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   177
    "separation(M,P) == 
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   178
	\<forall>z[M]. \<exists>y[M]. \<forall>x[M]. x \<in> y <-> x \<in> z & P(x)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   179
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   180
  upair_ax :: "(i=>o) => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   181
    "upair_ax(M) == \<forall>x y. M(x) --> M(y) --> (\<exists>z[M]. upair(M,x,y,z))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   182
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   183
  Union_ax :: "(i=>o) => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   184
    "Union_ax(M) == \<forall>x[M]. (\<exists>z[M]. big_union(M,x,z))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   185
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   186
  power_ax :: "(i=>o) => o"
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   187
    "power_ax(M) == \<forall>x[M]. (\<exists>z[M]. powerset(M,x,z))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   188
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   189
  univalent :: "[i=>o, i, [i,i]=>o] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   190
    "univalent(M,A,P) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   191
	(\<forall>x[M]. x\<in>A --> (\<forall>y z. M(y) --> M(z) --> P(x,y) & P(x,z) --> y=z))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   192
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   193
  replacement :: "[i=>o, [i,i]=>o] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   194
    "replacement(M,P) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   195
      \<forall>A[M]. univalent(M,A,P) -->
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   196
      (\<exists>Y[M]. (\<forall>b[M]. ((\<exists>x[M]. x\<in>A & P(x,b)) --> b \<in> Y)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   197
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   198
  strong_replacement :: "[i=>o, [i,i]=>o] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   199
    "strong_replacement(M,P) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   200
      \<forall>A[M]. univalent(M,A,P) -->
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   201
      (\<exists>Y[M]. (\<forall>b[M]. (b \<in> Y <-> (\<exists>x[M]. x\<in>A & P(x,b)))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   202
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   203
  foundation_ax :: "(i=>o) => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   204
    "foundation_ax(M) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   205
	\<forall>x[M]. (\<exists>y\<in>x. M(y))
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   206
                 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & z \<in> y))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   207
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   208
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   209
subsection{*A trivial consistency proof for $V_\omega$ *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   210
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   211
text{*We prove that $V_\omega$ 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   212
      (or @{text univ} in Isabelle) satisfies some ZF axioms.
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   213
     Kunen, Theorem IV 3.13, page 123.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   214
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   215
lemma univ0_downwards_mem: "[| y \<in> x; x \<in> univ(0) |] ==> y \<in> univ(0)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   216
apply (insert Transset_univ [OF Transset_0])  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   217
apply (simp add: Transset_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   218
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   219
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   220
lemma univ0_Ball_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   221
     "A \<in> univ(0) ==> (\<forall>x\<in>A. x \<in> univ(0) --> P(x)) <-> (\<forall>x\<in>A. P(x))" 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   222
by (blast intro: univ0_downwards_mem) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   224
lemma univ0_Bex_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   225
     "A \<in> univ(0) ==> (\<exists>x\<in>A. x \<in> univ(0) & P(x)) <-> (\<exists>x\<in>A. P(x))" 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   226
by (blast intro: univ0_downwards_mem) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   227
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   228
text{*Congruence rule for separation: can assume the variable is in @{text M}*}
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   229
lemma separation_cong [cong]:
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13323
diff changeset
   230
     "(!!x. M(x) ==> P(x) <-> P'(x)) 
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13323
diff changeset
   231
      ==> separation(M, %x. P(x)) <-> separation(M, %x. P'(x))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   232
by (simp add: separation_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   233
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   234
text{*Congruence rules for replacement*}
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   235
lemma univalent_cong [cong]:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   236
     "[| A=A'; !!x y. [| x\<in>A; M(x); M(y) |] ==> P(x,y) <-> P'(x,y) |] 
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13323
diff changeset
   237
      ==> univalent(M, A, %x y. P(x,y)) <-> univalent(M, A', %x y. P'(x,y))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   238
by (simp add: univalent_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   239
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   240
lemma strong_replacement_cong [cong]:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   241
     "[| !!x y. [| M(x); M(y) |] ==> P(x,y) <-> P'(x,y) |] 
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13323
diff changeset
   242
      ==> strong_replacement(M, %x y. P(x,y)) <-> 
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13323
diff changeset
   243
          strong_replacement(M, %x y. P'(x,y))" 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   244
by (simp add: strong_replacement_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   245
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   246
text{*The extensionality axiom*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   247
lemma "extensionality(\<lambda>x. x \<in> univ(0))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   248
apply (simp add: extensionality_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   249
apply (blast intro: univ0_downwards_mem) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   250
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   251
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   252
text{*The separation axiom requires some lemmas*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   253
lemma Collect_in_Vfrom:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   254
     "[| X \<in> Vfrom(A,j);  Transset(A) |] ==> Collect(X,P) \<in> Vfrom(A, succ(j))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   255
apply (drule Transset_Vfrom)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   256
apply (rule subset_mem_Vfrom)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   257
apply (unfold Transset_def, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   258
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   259
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   260
lemma Collect_in_VLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   261
     "[| X \<in> Vfrom(A,i);  Limit(i);  Transset(A) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   262
      ==> Collect(X,P) \<in> Vfrom(A,i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   263
apply (rule Limit_VfromE, assumption+)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   264
apply (blast intro: Limit_has_succ VfromI Collect_in_Vfrom)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   265
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   266
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   267
lemma Collect_in_univ:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   268
     "[| X \<in> univ(A);  Transset(A) |] ==> Collect(X,P) \<in> univ(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   269
by (simp add: univ_def Collect_in_VLimit Limit_nat)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   270
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   271
lemma "separation(\<lambda>x. x \<in> univ(0), P)"
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   272
apply (simp add: separation_def, clarify) 
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13323
diff changeset
   273
apply (rule_tac x = "Collect(z,P)" in bexI) 
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   274
apply (blast intro: Collect_in_univ Transset_0)+
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   275
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   276
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   277
text{*Unordered pairing axiom*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   278
lemma "upair_ax(\<lambda>x. x \<in> univ(0))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   279
apply (simp add: upair_ax_def upair_def)  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   280
apply (blast intro: doubleton_in_univ) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   281
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   282
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   283
text{*Union axiom*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   284
lemma "Union_ax(\<lambda>x. x \<in> univ(0))"  
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   285
apply (simp add: Union_ax_def big_union_def, clarify) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   286
apply (rule_tac x="\<Union>x" in bexI)  
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   287
 apply (blast intro: univ0_downwards_mem)
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   288
apply (blast intro: Union_in_univ Transset_0) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   289
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   290
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   291
text{*Powerset axiom*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   292
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   293
lemma Pow_in_univ:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   294
     "[| X \<in> univ(A);  Transset(A) |] ==> Pow(X) \<in> univ(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   295
apply (simp add: univ_def Pow_in_VLimit Limit_nat)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   296
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   297
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   298
lemma "power_ax(\<lambda>x. x \<in> univ(0))"  
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   299
apply (simp add: power_ax_def powerset_def subset_def, clarify) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   300
apply (rule_tac x="Pow(x)" in bexI)
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   301
 apply (blast intro: univ0_downwards_mem)
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   302
apply (blast intro: Pow_in_univ Transset_0) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   303
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   304
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   305
text{*Foundation axiom*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   306
lemma "foundation_ax(\<lambda>x. x \<in> univ(0))"  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   307
apply (simp add: foundation_ax_def, clarify)
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   308
apply (cut_tac A=x in foundation) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   309
apply (blast intro: univ0_downwards_mem)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   310
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   311
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   312
lemma "replacement(\<lambda>x. x \<in> univ(0), P)"  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   313
apply (simp add: replacement_def, clarify) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   314
oops
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   315
text{*no idea: maybe prove by induction on the rank of A?*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   316
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   317
text{*Still missing: Replacement, Choice*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   318
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   319
subsection{*lemmas needed to reduce some set constructions to instances
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   320
      of Separation*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   321
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   322
lemma image_iff_Collect: "r `` A = {y \<in> Union(Union(r)). \<exists>p\<in>r. \<exists>x\<in>A. p=<x,y>}"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   323
apply (rule equalityI, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   324
apply (simp add: Pair_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   325
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   326
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   327
lemma vimage_iff_Collect:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   328
     "r -`` A = {x \<in> Union(Union(r)). \<exists>p\<in>r. \<exists>y\<in>A. p=<x,y>}"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   329
apply (rule equalityI, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   330
apply (simp add: Pair_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   331
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   332
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   333
text{*These two lemmas lets us prove @{text domain_closed} and 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   334
      @{text range_closed} without new instances of separation*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   335
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   336
lemma domain_eq_vimage: "domain(r) = r -`` Union(Union(r))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   337
apply (rule equalityI, auto)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   338
apply (rule vimageI, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   339
apply (simp add: Pair_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   340
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   341
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   342
lemma range_eq_image: "range(r) = r `` Union(Union(r))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   343
apply (rule equalityI, auto)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   344
apply (rule imageI, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   345
apply (simp add: Pair_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   346
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   347
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   348
lemma replacementD:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   349
    "[| replacement(M,P); M(A);  univalent(M,A,P) |]
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   350
     ==> \<exists>Y[M]. (\<forall>b[M]. ((\<exists>x[M]. x\<in>A & P(x,b)) --> b \<in> Y))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   351
by (simp add: replacement_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   352
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   353
lemma strong_replacementD:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   354
    "[| strong_replacement(M,P); M(A);  univalent(M,A,P) |]
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   355
     ==> \<exists>Y[M]. (\<forall>b[M]. (b \<in> Y <-> (\<exists>x[M]. x\<in>A & P(x,b))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   356
by (simp add: strong_replacement_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   357
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   358
lemma separationD:
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   359
    "[| separation(M,P); M(z) |] ==> \<exists>y[M]. \<forall>x[M]. x \<in> y <-> x \<in> z & P(x)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   360
by (simp add: separation_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   361
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   362
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   363
text{*More constants, for order types*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   364
constdefs
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   365
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   366
  order_isomorphism :: "[i=>o,i,i,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   367
    "order_isomorphism(M,A,r,B,s,f) == 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   368
        bijection(M,A,B,f) & 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   369
        (\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A -->
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   370
          (\<forall>p[M]. \<forall>fx[M]. \<forall>fy[M]. \<forall>q[M].
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   371
            pair(M,x,y,p) --> fun_apply(M,f,x,fx) --> fun_apply(M,f,y,fy) --> 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   372
            pair(M,fx,fy,q) --> (p\<in>r <-> q\<in>s))))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   373
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   374
  pred_set :: "[i=>o,i,i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   375
    "pred_set(M,A,x,r,B) == 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   376
	\<forall>y[M]. y \<in> B <-> (\<exists>p[M]. p\<in>r & y \<in> A & pair(M,y,x,p))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   377
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   378
  membership :: "[i=>o,i,i] => o" --{*membership relation*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   379
    "membership(M,A,r) == 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   380
	\<forall>p[M]. p \<in> r <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>A & x\<in>y & pair(M,x,y,p)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   381
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   382
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   383
subsection{*Absoluteness for a transitive class model*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   384
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   385
text{*The class M is assumed to be transitive and to satisfy some
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   386
      relativized ZF axioms*}
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   387
locale M_triv_axioms =
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   388
  fixes M
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   389
  assumes transM:           "[| y\<in>x; M(x) |] ==> M(y)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   390
      and nonempty [simp]:  "M(0)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   391
      and upair_ax:	    "upair_ax(M)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   392
      and Union_ax:	    "Union_ax(M)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   393
      and power_ax:         "power_ax(M)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   394
      and replacement:      "replacement(M,P)"
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   395
      and M_nat [iff]:      "M(nat)"           (*i.e. the axiom of infinity*)
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   396
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   397
lemma (in M_triv_axioms) ball_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   398
     "M(A) ==> (\<forall>x\<in>A. M(x) --> P(x)) <-> (\<forall>x\<in>A. P(x))" 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   399
by (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   400
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   401
lemma (in M_triv_axioms) rall_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   402
     "M(A) ==> (\<forall>x[M]. x\<in>A --> P(x)) <-> (\<forall>x\<in>A. P(x))" 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   403
by (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   404
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   405
lemma (in M_triv_axioms) bex_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   406
     "M(A) ==> (\<exists>x\<in>A. M(x) & P(x)) <-> (\<exists>x\<in>A. P(x))" 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   407
by (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   408
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   409
lemma (in M_triv_axioms) rex_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   410
     "M(A) ==> (\<exists>x[M]. x\<in>A & P(x)) <-> (\<exists>x\<in>A. P(x))" 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   411
by (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   412
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   413
lemma (in M_triv_axioms) ball_iff_equiv: 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   414
     "M(A) ==> (\<forall>x[M]. (x\<in>A <-> P(x))) <-> 
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   415
               (\<forall>x\<in>A. P(x)) & (\<forall>x. P(x) --> M(x) --> x\<in>A)" 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   416
by (blast intro: transM)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   417
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   418
text{*Simplifies proofs of equalities when there's an iff-equality
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   419
      available for rewriting, universally quantified over M. *}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   420
lemma (in M_triv_axioms) M_equalityI: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   421
     "[| !!x. M(x) ==> x\<in>A <-> x\<in>B; M(A); M(B) |] ==> A=B"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   422
by (blast intro!: equalityI dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   423
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   424
lemma (in M_triv_axioms) empty_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   425
     "M(z) ==> empty(M,z) <-> z=0"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   426
apply (simp add: empty_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   427
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   428
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   429
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   430
lemma (in M_triv_axioms) subset_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   431
     "M(A) ==> subset(M,A,B) <-> A \<subseteq> B"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   432
apply (simp add: subset_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   433
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   434
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   435
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   436
lemma (in M_triv_axioms) upair_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   437
     "M(z) ==> upair(M,a,b,z) <-> z={a,b}"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   438
apply (simp add: upair_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   439
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   440
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   441
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   442
lemma (in M_triv_axioms) upair_in_M_iff [iff]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   443
     "M({a,b}) <-> M(a) & M(b)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   444
apply (insert upair_ax, simp add: upair_ax_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   445
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   446
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   447
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   448
lemma (in M_triv_axioms) singleton_in_M_iff [iff]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   449
     "M({a}) <-> M(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   450
by (insert upair_in_M_iff [of a a], simp) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   451
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   452
lemma (in M_triv_axioms) pair_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   453
     "M(z) ==> pair(M,a,b,z) <-> z=<a,b>"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   454
apply (simp add: pair_def ZF.Pair_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   455
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   456
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   457
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   458
lemma (in M_triv_axioms) pair_in_M_iff [iff]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   459
     "M(<a,b>) <-> M(a) & M(b)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   460
by (simp add: ZF.Pair_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   461
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   462
lemma (in M_triv_axioms) pair_components_in_M:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   463
     "[| <x,y> \<in> A; M(A) |] ==> M(x) & M(y)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   464
apply (simp add: Pair_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   465
apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   466
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   467
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   468
lemma (in M_triv_axioms) cartprod_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   469
     "[| M(A); M(B); M(z) |] ==> cartprod(M,A,B,z) <-> z = A*B"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   470
apply (simp add: cartprod_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   471
apply (rule iffI) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   472
 apply (blast intro!: equalityI intro: transM dest!: rspec) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   473
apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   474
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   475
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   476
lemma (in M_triv_axioms) union_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   477
     "[| M(a); M(b); M(z) |] ==> union(M,a,b,z) <-> z = a Un b"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   478
apply (simp add: union_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   479
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   480
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   481
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   482
lemma (in M_triv_axioms) inter_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   483
     "[| M(a); M(b); M(z) |] ==> inter(M,a,b,z) <-> z = a Int b"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   484
apply (simp add: inter_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   485
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   486
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   487
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   488
lemma (in M_triv_axioms) setdiff_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   489
     "[| M(a); M(b); M(z) |] ==> setdiff(M,a,b,z) <-> z = a-b"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   490
apply (simp add: setdiff_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   491
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   492
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   493
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   494
lemma (in M_triv_axioms) Union_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   495
     "[| M(A); M(z) |] ==> big_union(M,A,z) <-> z = Union(A)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   496
apply (simp add: big_union_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   497
apply (blast intro!: equalityI dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   498
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   499
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   500
lemma (in M_triv_axioms) Union_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   501
     "M(A) ==> M(Union(A))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   502
by (insert Union_ax, simp add: Union_ax_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   503
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   504
lemma (in M_triv_axioms) Un_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   505
     "[| M(A); M(B) |] ==> M(A Un B)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   506
by (simp only: Un_eq_Union, blast) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   507
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   508
lemma (in M_triv_axioms) cons_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   509
     "[| M(a); M(A) |] ==> M(cons(a,A))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   510
by (subst cons_eq [symmetric], blast) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   511
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   512
lemma (in M_triv_axioms) cons_abs [simp]: 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   513
     "[| M(b); M(z) |] ==> is_cons(M,a,b,z) <-> z = cons(a,b)"
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   514
by (simp add: is_cons_def, blast intro: transM)  
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   515
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   516
lemma (in M_triv_axioms) successor_abs [simp]: 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   517
     "[| M(a); M(z) |] ==> successor(M,a,z) <-> z = succ(a)"
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   518
by (simp add: successor_def, blast)  
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   519
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   520
lemma (in M_triv_axioms) succ_in_M_iff [iff]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   521
     "M(succ(a)) <-> M(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   522
apply (simp add: succ_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   523
apply (blast intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   524
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   525
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   526
lemma (in M_triv_axioms) separation_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   527
     "[| separation(M,P); M(A) |] ==> M(Collect(A,P))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   528
apply (insert separation, simp add: separation_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   529
apply (drule rspec, assumption, clarify) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   530
apply (subgoal_tac "y = Collect(A,P)", blast)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   531
apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   532
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   533
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   534
text{*Probably the premise and conclusion are equivalent*}
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   535
lemma (in M_triv_axioms) strong_replacementI [OF rallI]:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   536
    "[| \<forall>A[M]. separation(M, %u. \<exists>x[M]. x\<in>A & P(x,u)) |]
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   537
     ==> strong_replacement(M,P)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   538
apply (simp add: strong_replacement_def, clarify) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   539
apply (frule replacementD [OF replacement], assumption, clarify) 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   540
apply (drule_tac x=A in rspec, clarify)  
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   541
apply (drule_tac z=Y in separationD, assumption, clarify) 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   542
apply (rule_tac x=y in rexI) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   543
apply (blast dest: transM)+
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   544
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   545
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   546
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   547
(*The last premise expresses that P takes M to M*)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   548
lemma (in M_triv_axioms) strong_replacement_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   549
     "[| strong_replacement(M,P); M(A); univalent(M,A,P); 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   550
       !!x y. [| x\<in>A; P(x,y); M(x) |] ==> M(y) |] ==> M(Replace(A,P))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   551
apply (simp add: strong_replacement_def) 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   552
apply (drule rspec, auto) 
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   553
apply (subgoal_tac "Replace(A,P) = Y")
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   554
 apply simp 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   555
apply (rule equality_iffI) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   556
apply (simp add: Replace_iff, safe)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   557
 apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   558
apply (frule transM, assumption) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   559
 apply (simp add: univalent_def)
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   560
 apply (drule rspec [THEN iffD1], assumption, assumption)
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   561
 apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   562
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   563
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   564
(*The first premise can't simply be assumed as a schema.
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   565
  It is essential to take care when asserting instances of Replacement.
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   566
  Let K be a nonconstructible subset of nat and define
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   567
  f(x) = x if x:K and f(x)=0 otherwise.  Then RepFun(nat,f) = cons(0,K), a 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   568
  nonconstructible set.  So we cannot assume that M(X) implies M(RepFun(X,f))
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   569
  even for f : M -> M.
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   570
*)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   571
lemma (in M_triv_axioms) RepFun_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   572
     "[| strong_replacement(M, \<lambda>x y. y = f(x)); M(A); \<forall>x\<in>A. M(f(x)) |]
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   573
      ==> M(RepFun(A,f))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   574
apply (simp add: RepFun_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   575
apply (rule strong_replacement_closed) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   576
apply (auto dest: transM  simp add: univalent_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   577
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   578
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   579
lemma (in M_triv_axioms) lam_closed [intro,simp]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   580
     "[| strong_replacement(M, \<lambda>x y. y = <x,b(x)>); M(A); \<forall>x\<in>A. M(b(x)) |]
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   581
      ==> M(\<lambda>x\<in>A. b(x))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   582
by (simp add: lam_def, blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   583
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   584
lemma (in M_triv_axioms) image_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   585
     "[| M(r); M(A); M(z) |] ==> image(M,r,A,z) <-> z = r``A"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   586
apply (simp add: image_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   587
apply (rule iffI) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   588
 apply (blast intro!: equalityI dest: transM, blast) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   589
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   590
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   591
text{*What about @{text Pow_abs}?  Powerset is NOT absolute!
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   592
      This result is one direction of absoluteness.*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   593
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   594
lemma (in M_triv_axioms) powerset_Pow: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   595
     "powerset(M, x, Pow(x))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   596
by (simp add: powerset_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   597
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   598
text{*But we can't prove that the powerset in @{text M} includes the
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   599
      real powerset.*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   600
lemma (in M_triv_axioms) powerset_imp_subset_Pow: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   601
     "[| powerset(M,x,y); M(y) |] ==> y <= Pow(x)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   602
apply (simp add: powerset_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   603
apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   604
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   605
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   606
lemma (in M_triv_axioms) nat_into_M [intro]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   607
     "n \<in> nat ==> M(n)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   608
by (induct n rule: nat_induct, simp_all)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   609
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   610
lemma (in M_triv_axioms) nat_case_closed:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   611
  "[|M(k); M(a); \<forall>m[M]. M(b(m))|] ==> M(nat_case(a,b,k))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   612
apply (case_tac "k=0", simp) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   613
apply (case_tac "\<exists>m. k = succ(m)", force)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   614
apply (simp add: nat_case_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   615
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   616
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   617
lemma (in M_triv_axioms) Inl_in_M_iff [iff]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   618
     "M(Inl(a)) <-> M(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   619
by (simp add: Inl_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   620
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   621
lemma (in M_triv_axioms) Inr_in_M_iff [iff]:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   622
     "M(Inr(a)) <-> M(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   623
by (simp add: Inr_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   624
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   625
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   626
subsection{*Absoluteness for ordinals*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   627
text{*These results constitute Theorem IV 5.1 of Kunen (page 126).*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   628
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   629
lemma (in M_triv_axioms) lt_closed:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   630
     "[| j<i; M(i) |] ==> M(j)" 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   631
by (blast dest: ltD intro: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   632
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   633
lemma (in M_triv_axioms) transitive_set_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   634
     "M(a) ==> transitive_set(M,a) <-> Transset(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   635
by (simp add: transitive_set_def Transset_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   636
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   637
lemma (in M_triv_axioms) ordinal_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   638
     "M(a) ==> ordinal(M,a) <-> Ord(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   639
by (simp add: ordinal_def Ord_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   640
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   641
lemma (in M_triv_axioms) limit_ordinal_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   642
     "M(a) ==> limit_ordinal(M,a) <-> Limit(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   643
apply (simp add: limit_ordinal_def Ord_0_lt_iff Limit_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   644
apply (simp add: lt_def, blast) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   645
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   646
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   647
lemma (in M_triv_axioms) successor_ordinal_abs [simp]: 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   648
     "M(a) ==> successor_ordinal(M,a) <-> Ord(a) & (\<exists>b[M]. a = succ(b))"
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   649
apply (simp add: successor_ordinal_def, safe)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   650
apply (drule Ord_cases_disj, auto) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   651
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   652
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   653
lemma finite_Ord_is_nat:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   654
      "[| Ord(a); ~ Limit(a); \<forall>x\<in>a. ~ Limit(x) |] ==> a \<in> nat"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   655
by (induct a rule: trans_induct3, simp_all)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   656
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   657
lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   658
by (induct a rule: nat_induct, auto)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   659
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   660
lemma (in M_triv_axioms) finite_ordinal_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   661
     "M(a) ==> finite_ordinal(M,a) <-> a \<in> nat"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   662
apply (simp add: finite_ordinal_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   663
apply (blast intro: finite_Ord_is_nat intro: nat_into_Ord 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   664
             dest: Ord_trans naturals_not_limit)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   665
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   666
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   667
lemma Limit_non_Limit_implies_nat:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   668
     "[| Limit(a); \<forall>x\<in>a. ~ Limit(x) |] ==> a = nat"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   669
apply (rule le_anti_sym) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   670
apply (rule all_lt_imp_le, blast, blast intro: Limit_is_Ord)  
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   671
 apply (simp add: lt_def)  
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   672
 apply (blast intro: Ord_in_Ord Ord_trans finite_Ord_is_nat) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   673
apply (erule nat_le_Limit)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   674
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   675
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   676
lemma (in M_triv_axioms) omega_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   677
     "M(a) ==> omega(M,a) <-> a = nat"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   678
apply (simp add: omega_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   679
apply (blast intro: Limit_non_Limit_implies_nat dest: naturals_not_limit)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   680
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   681
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   682
lemma (in M_triv_axioms) number1_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   683
     "M(a) ==> number1(M,a) <-> a = 1"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   684
by (simp add: number1_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   685
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   686
lemma (in M_triv_axioms) number1_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   687
     "M(a) ==> number2(M,a) <-> a = succ(1)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   688
by (simp add: number2_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   689
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   690
lemma (in M_triv_axioms) number3_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   691
     "M(a) ==> number3(M,a) <-> a = succ(succ(1))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   692
by (simp add: number3_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   693
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   694
text{*Kunen continued to 20...*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   695
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   696
(*Could not get this to work.  The \<lambda>x\<in>nat is essential because everything 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   697
  but the recursion variable must stay unchanged.  But then the recursion
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   698
  equations only hold for x\<in>nat (or in some other set) and not for the 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   699
  whole of the class M.
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   700
  consts
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   701
    natnumber_aux :: "[i=>o,i] => i"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   702
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   703
  primrec
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   704
      "natnumber_aux(M,0) = (\<lambda>x\<in>nat. if empty(M,x) then 1 else 0)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   705
      "natnumber_aux(M,succ(n)) = 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   706
	   (\<lambda>x\<in>nat. if (\<exists>y[M]. natnumber_aux(M,n)`y=1 & successor(M,y,x)) 
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   707
		     then 1 else 0)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   708
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   709
  constdefs
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   710
    natnumber :: "[i=>o,i,i] => o"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   711
      "natnumber(M,n,x) == natnumber_aux(M,n)`x = 1"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   712
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   713
  lemma (in M_triv_axioms) [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   714
       "natnumber(M,0,x) == x=0"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   715
*)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   716
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   717
subsection{*Some instances of separation and strong replacement*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   718
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   719
locale M_axioms = M_triv_axioms +
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   720
assumes Inter_separation:
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   721
     "M(A) ==> separation(M, \<lambda>x. \<forall>y[M]. y\<in>A --> x\<in>y)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   722
  and cartprod_separation:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   723
     "[| M(A); M(B) |] 
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
   724
      ==> separation(M, \<lambda>z. \<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,z)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   725
  and image_separation:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   726
     "[| M(A); M(r) |] 
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   727
      ==> separation(M, \<lambda>y. \<exists>p[M]. p\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,p)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   728
  and converse_separation:
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
   729
     "M(r) ==> separation(M, 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
   730
         \<lambda>z. \<exists>p[M]. p\<in>r & (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,p) & pair(M,y,x,z)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   731
  and restrict_separation:
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   732
     "M(A) ==> separation(M, \<lambda>z. \<exists>x[M]. x\<in>A & (\<exists>y[M]. pair(M,x,y,z)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   733
  and comp_separation:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   734
     "[| M(r); M(s) |]
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   735
      ==> separation(M, \<lambda>xz. \<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M]. 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   736
		  pair(M,x,z,xz) & pair(M,x,y,xy) & pair(M,y,z,yz) & 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   737
                  xy\<in>s & yz\<in>r)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   738
  and pred_separation:
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
   739
     "[| M(r); M(x) |] ==> separation(M, \<lambda>y. \<exists>p[M]. p\<in>r & pair(M,y,x,p))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   740
  and Memrel_separation:
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13290
diff changeset
   741
     "separation(M, \<lambda>z. \<exists>x[M]. \<exists>y[M]. pair(M,x,y,z) & x \<in> y)"
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   742
  and funspace_succ_replacement:
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   743
     "M(n) ==> 
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   744
      strong_replacement(M, \<lambda>p z. \<exists>f[M]. \<exists>b[M]. \<exists>nb[M]. \<exists>cnbf[M]. 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   745
                pair(M,f,b,p) & pair(M,n,b,nb) & is_cons(M,nb,f,cnbf) &
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   746
                upair(M,cnbf,cnbf,z))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   747
  and well_ord_iso_separation:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   748
     "[| M(A); M(f); M(r) |] 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   749
      ==> separation (M, \<lambda>x. x\<in>A --> (\<exists>y[M]. (\<exists>p[M]. 
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   750
		     fun_apply(M,f,x,y) & pair(M,y,x,p) & p \<in> r)))"
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   751
  and obase_separation:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   752
     --{*part of the order type formalization*}
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   753
     "[| M(A); M(r) |] 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   754
      ==> separation(M, \<lambda>a. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   755
	     ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) &
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   756
	     order_isomorphism(M,par,r,x,mx,g))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   757
  and obase_equals_separation:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   758
     "[| M(A); M(r) |] 
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   759
      ==> separation (M, \<lambda>x. x\<in>A --> ~(\<exists>y[M]. \<exists>g[M]. 
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   760
			      ordinal(M,y) & (\<exists>my[M]. \<exists>pxr[M]. 
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   761
			      membership(M,y,my) & pred_set(M,A,x,r,pxr) &
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   762
			      order_isomorphism(M,pxr,r,y,my,g))))"
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   763
  and omap_replacement:
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   764
     "[| M(A); M(r) |] 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   765
      ==> strong_replacement(M,
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   766
             \<lambda>a z. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   767
	     ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) & 
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
   768
	     pred_set(M,A,a,r,par) & order_isomorphism(M,par,r,x,mx,g))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   769
  and is_recfun_separation:
13319
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   770
     --{*for well-founded recursion*}
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   771
     "[| M(r); M(f); M(g); M(a); M(b) |] 
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   772
     ==> separation(M, 
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   773
            \<lambda>x. \<exists>xa[M]. \<exists>xb[M]. 
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   774
                pair(M,x,a,xa) & xa \<in> r & pair(M,x,b,xb) & xb \<in> r & 
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   775
                (\<exists>fx[M]. \<exists>gx[M]. fun_apply(M,f,x,fx) & fun_apply(M,g,x,gx) & 
23de7b3af453 More Separation proofs
paulson
parents: 13316
diff changeset
   776
                                   fx \<noteq> gx))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   777
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   778
lemma (in M_axioms) cartprod_iff_lemma:
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   779
     "[| M(C);  \<forall>u[M]. u \<in> C <-> (\<exists>x\<in>A. \<exists>y\<in>B. u = {{x}, {x,y}}); 
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   780
         powerset(M, A \<union> B, p1); powerset(M, p1, p2);  M(p2) |]
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   781
       ==> C = {u \<in> p2 . \<exists>x\<in>A. \<exists>y\<in>B. u = {{x}, {x,y}}}"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   782
apply (simp add: powerset_def) 
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   783
apply (rule equalityI, clarify, simp)
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   784
 apply (frule transM, assumption) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   785
 apply (frule transM, assumption, simp) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   786
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   787
apply clarify
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   788
apply (frule transM, assumption, force) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   789
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   790
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   791
lemma (in M_axioms) cartprod_iff:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   792
     "[| M(A); M(B); M(C) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   793
      ==> cartprod(M,A,B,C) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   794
          (\<exists>p1 p2. M(p1) & M(p2) & powerset(M,A Un B,p1) & powerset(M,p1,p2) &
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   795
                   C = {z \<in> p2. \<exists>x\<in>A. \<exists>y\<in>B. z = <x,y>})"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   796
apply (simp add: Pair_def cartprod_def, safe)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   797
defer 1 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   798
  apply (simp add: powerset_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   799
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   800
txt{*Final, difficult case: the left-to-right direction of the theorem.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   801
apply (insert power_ax, simp add: power_ax_def) 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   802
apply (frule_tac x="A Un B" and P="\<lambda>x. rex(M,?Q(x))" in rspec) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   803
apply (blast, clarify) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   804
apply (drule_tac x=z and P="\<lambda>x. rex(M,?Q(x))" in rspec)
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   805
apply assumption
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   806
apply (blast intro: cartprod_iff_lemma) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   807
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   808
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   809
lemma (in M_axioms) cartprod_closed_lemma:
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   810
     "[| M(A); M(B) |] ==> \<exists>C[M]. cartprod(M,A,B,C)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   811
apply (simp del: cartprod_abs add: cartprod_iff)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   812
apply (insert power_ax, simp add: power_ax_def) 
13299
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   813
apply (frule_tac x="A Un B" and P="\<lambda>x. rex(M,?Q(x))" in rspec) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   814
apply (blast, clarify) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   815
apply (drule_tac x=z and P="\<lambda>x. rex(M,?Q(x))" in rspec) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   816
apply (blast, clarify)
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   817
apply (intro rexI exI conjI) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   818
prefer 5 apply (rule refl) 
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   819
prefer 3 apply assumption
3a932abf97e8 More use of relativized quantifiers
paulson
parents: 13298
diff changeset
   820
prefer 3 apply assumption
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   821
apply (insert cartprod_separation [of A B], auto)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   822
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   823
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   824
text{*All the lemmas above are necessary because Powerset is not absolute.
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   825
      I should have used Replacement instead!*}
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   826
lemma (in M_axioms) cartprod_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   827
     "[| M(A); M(B) |] ==> M(A*B)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   828
by (frule cartprod_closed_lemma, assumption, force)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   829
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   830
lemma (in M_axioms) sum_closed [intro,simp]: 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   831
     "[| M(A); M(B) |] ==> M(A+B)"
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   832
by (simp add: sum_def)
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   833
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   834
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   835
subsubsection {*converse of a relation*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   836
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   837
lemma (in M_axioms) M_converse_iff:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   838
     "M(r) ==> 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   839
      converse(r) = 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   840
      {z \<in> Union(Union(r)) * Union(Union(r)). 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   841
       \<exists>p\<in>r. \<exists>x[M]. \<exists>y[M]. p = \<langle>x,y\<rangle> & z = \<langle>y,x\<rangle>}"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   842
apply (rule equalityI)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   843
 prefer 2 apply (blast dest: transM, clarify, simp) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   844
apply (simp add: Pair_def) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   845
apply (blast dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   846
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   847
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   848
lemma (in M_axioms) converse_closed [intro,simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   849
     "M(r) ==> M(converse(r))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   850
apply (simp add: M_converse_iff)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   851
apply (insert converse_separation [of r], simp)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   852
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   853
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   854
lemma (in M_axioms) converse_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   855
     "[| M(r); M(z) |] ==> is_converse(M,r,z) <-> z = converse(r)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   856
apply (simp add: is_converse_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   857
apply (rule iffI)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   858
 prefer 2 apply blast 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   859
apply (rule M_equalityI)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   860
  apply simp
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   861
  apply (blast dest: transM)+
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   862
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   863
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   864
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   865
subsubsection {*image, preimage, domain, range*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   866
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   867
lemma (in M_axioms) image_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   868
     "[| M(A); M(r) |] ==> M(r``A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   869
apply (simp add: image_iff_Collect)
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   870
apply (insert image_separation [of A r], simp) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   871
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   872
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   873
lemma (in M_axioms) vimage_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   874
     "[| M(r); M(A); M(z) |] ==> pre_image(M,r,A,z) <-> z = r-``A"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   875
apply (simp add: pre_image_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   876
apply (rule iffI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   877
 apply (blast intro!: equalityI dest: transM, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   878
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   879
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   880
lemma (in M_axioms) vimage_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   881
     "[| M(A); M(r) |] ==> M(r-``A)"
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   882
by (simp add: vimage_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   883
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   884
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   885
subsubsection{*Domain, range and field*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   886
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   887
lemma (in M_axioms) domain_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   888
     "[| M(r); M(z) |] ==> is_domain(M,r,z) <-> z = domain(r)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   889
apply (simp add: is_domain_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   890
apply (blast intro!: equalityI dest: transM) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   891
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   892
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   893
lemma (in M_axioms) domain_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   894
     "M(r) ==> M(domain(r))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   895
apply (simp add: domain_eq_vimage)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   896
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   897
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   898
lemma (in M_axioms) range_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   899
     "[| M(r); M(z) |] ==> is_range(M,r,z) <-> z = range(r)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   900
apply (simp add: is_range_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   901
apply (blast intro!: equalityI dest: transM)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   902
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   903
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   904
lemma (in M_axioms) range_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   905
     "M(r) ==> M(range(r))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   906
apply (simp add: range_eq_image)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   907
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   908
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   909
lemma (in M_axioms) field_abs [simp]: 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   910
     "[| M(r); M(z) |] ==> is_field(M,r,z) <-> z = field(r)"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   911
by (simp add: domain_closed range_closed is_field_def field_def)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   912
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   913
lemma (in M_axioms) field_closed [intro,simp]: 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   914
     "M(r) ==> M(field(r))"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   915
by (simp add: domain_closed range_closed Un_closed field_def) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   916
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   917
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   918
subsubsection{*Relations, functions and application*}
13254
5146ccaedf42 class quantifiers (some)
paulson
parents: 13251
diff changeset
   919
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   920
lemma (in M_axioms) relation_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   921
     "M(r) ==> is_relation(M,r) <-> relation(r)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   922
apply (simp add: is_relation_def relation_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   923
apply (blast dest!: bspec dest: pair_components_in_M)+
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   924
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   925
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   926
lemma (in M_axioms) function_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   927
     "M(r) ==> is_function(M,r) <-> function(r)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   928
apply (simp add: is_function_def function_def, safe) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   929
   apply (frule transM, assumption) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   930
  apply (blast dest: pair_components_in_M)+
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   931
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   932
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   933
lemma (in M_axioms) apply_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   934
     "[|M(f); M(a)|] ==> M(f`a)"
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   935
by (simp add: apply_def)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   936
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   937
lemma (in M_axioms) apply_abs: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   938
     "[| function(f); M(f); M(y) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   939
      ==> fun_apply(M,f,x,y) <-> x \<in> domain(f) & f`x = y"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   940
apply (simp add: fun_apply_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   941
apply (blast intro: function_apply_equality function_apply_Pair) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   942
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   943
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   944
lemma (in M_axioms) typed_apply_abs: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   945
     "[| f \<in> A -> B; M(f); M(y) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   946
      ==> fun_apply(M,f,x,y) <-> x \<in> A & f`x = y"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   947
by (simp add: apply_abs fun_is_function domain_of_fun) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   948
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   949
lemma (in M_axioms) typed_function_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   950
     "[| M(A); M(f) |] ==> typed_function(M,A,B,f) <-> f \<in> A -> B"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   951
apply (auto simp add: typed_function_def relation_def Pi_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   952
apply (blast dest: pair_components_in_M)+
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   953
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   954
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   955
lemma (in M_axioms) injection_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   956
     "[| M(A); M(f) |] ==> injection(M,A,B,f) <-> f \<in> inj(A,B)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   957
apply (simp add: injection_def apply_iff inj_def apply_closed)
13247
e3c289f0724b towards absoluteness of wfrec-defined functions
paulson
parents: 13245
diff changeset
   958
apply (blast dest: transM [of _ A]) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   959
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   960
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   961
lemma (in M_axioms) surjection_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   962
     "[| M(A); M(B); M(f) |] ==> surjection(M,A,B,f) <-> f \<in> surj(A,B)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   963
by (simp add: typed_apply_abs surjection_def surj_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   964
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   965
lemma (in M_axioms) bijection_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   966
     "[| M(A); M(B); M(f) |] ==> bijection(M,A,B,f) <-> f \<in> bij(A,B)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   967
by (simp add: bijection_def bij_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   968
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   969
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
   970
subsubsection{*Composition of relations*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   971
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   972
lemma (in M_axioms) M_comp_iff:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   973
     "[| M(r); M(s) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   974
      ==> r O s = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   975
          {xz \<in> domain(s) * range(r).  
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
   976
            \<exists>x[M]. \<exists>y[M]. \<exists>z[M]. xz = \<langle>x,z\<rangle> & \<langle>x,y\<rangle> \<in> s & \<langle>y,z\<rangle> \<in> r}"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   977
apply (simp add: comp_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   978
apply (rule equalityI) 
13247
e3c289f0724b towards absoluteness of wfrec-defined functions
paulson
parents: 13245
diff changeset
   979
 apply clarify 
e3c289f0724b towards absoluteness of wfrec-defined functions
paulson
parents: 13245
diff changeset
   980
 apply simp 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   981
 apply  (blast dest:  transM)+
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   982
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   983
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   984
lemma (in M_axioms) comp_closed [intro,simp]: 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   985
     "[| M(r); M(s) |] ==> M(r O s)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   986
apply (simp add: M_comp_iff)
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   987
apply (insert comp_separation [of r s], simp) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   988
done
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   989
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   990
lemma (in M_axioms) composition_abs [simp]: 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   991
     "[| M(r); M(s); M(t) |] 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   992
      ==> composition(M,r,s,t) <-> t = r O s"
13247
e3c289f0724b towards absoluteness of wfrec-defined functions
paulson
parents: 13245
diff changeset
   993
apply safe
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   994
 txt{*Proving @{term "composition(M, r, s, r O s)"}*}
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   995
 prefer 2 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   996
 apply (simp add: composition_def comp_def)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   997
 apply (blast dest: transM) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   998
txt{*Opposite implication*}
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   999
apply (rule M_equalityI)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1000
  apply (simp add: composition_def comp_def)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1001
  apply (blast del: allE dest: transM)+
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1002
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1003
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1004
text{*no longer needed*}
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1005
lemma (in M_axioms) restriction_is_function: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1006
     "[| restriction(M,f,A,z); function(f); M(f); M(A); M(z) |] 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1007
      ==> function(z)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1008
apply (rotate_tac 1)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1009
apply (simp add: restriction_def ball_iff_equiv) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1010
apply (unfold function_def, blast) 
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13268
diff changeset
  1011
done
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13268
diff changeset
  1012
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1013
lemma (in M_axioms) restriction_abs [simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1014
     "[| M(f); M(A); M(z) |] 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1015
      ==> restriction(M,f,A,z) <-> z = restrict(f,A)"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1016
apply (simp add: ball_iff_equiv restriction_def restrict_def)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1017
apply (blast intro!: equalityI dest: transM) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1018
done
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1019
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1020
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1021
lemma (in M_axioms) M_restrict_iff:
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1022
     "M(r) ==> restrict(r,A) = {z \<in> r . \<exists>x\<in>A. \<exists>y[M]. z = \<langle>x, y\<rangle>}"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1023
by (simp add: restrict_def, blast dest: transM)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1024
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1025
lemma (in M_axioms) restrict_closed [intro,simp]: 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1026
     "[| M(A); M(r) |] ==> M(restrict(r,A))"
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1027
apply (simp add: M_restrict_iff)
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1028
apply (insert restrict_separation [of A], simp) 
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1029
done
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1030
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1031
lemma (in M_axioms) Inter_abs [simp]: 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1032
     "[| M(A); M(z) |] ==> big_inter(M,A,z) <-> z = Inter(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1033
apply (simp add: big_inter_def Inter_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1034
apply (blast intro!: equalityI dest: transM) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1035
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1036
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1037
lemma (in M_axioms) Inter_closed [intro,simp]:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1038
     "M(A) ==> M(Inter(A))"
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1039
by (insert Inter_separation, simp add: Inter_def)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1040
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1041
lemma (in M_axioms) Int_closed [intro,simp]:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1042
     "[| M(A); M(B) |] ==> M(A Int B)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1043
apply (subgoal_tac "M({A,B})")
13247
e3c289f0724b towards absoluteness of wfrec-defined functions
paulson
parents: 13245
diff changeset
  1044
apply (frule Inter_closed, force+) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1045
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1046
13290
28ce81eff3de separation of M_axioms into M_triv_axioms and M_axioms
paulson
parents: 13269
diff changeset
  1047
subsubsection{*Functions and function space*}
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1048
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1049
text{*M contains all finite functions*}
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1050
lemma (in M_axioms) finite_fun_closed_lemma [rule_format]: 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1051
     "[| n \<in> nat; M(A) |] ==> \<forall>f \<in> n -> A. M(f)"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1052
apply (induct_tac n, simp)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1053
apply (rule ballI)  
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1054
apply (simp add: succ_def) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1055
apply (frule fun_cons_restrict_eq)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1056
apply (erule ssubst) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1057
apply (subgoal_tac "M(f`x) & restrict(f,x) \<in> x -> A") 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1058
 apply (simp add: cons_closed nat_into_M apply_closed) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1059
apply (blast intro: apply_funtype transM restrict_type2) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1060
done
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1061
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1062
lemma (in M_axioms) finite_fun_closed [rule_format]: 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1063
     "[| f \<in> n -> A; n \<in> nat; M(A) |] ==> M(f)"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1064
by (blast intro: finite_fun_closed_lemma) 
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1065
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1066
text{*The assumption @{term "M(A->B)"} is unusual, but essential: in 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1067
all but trivial cases, A->B cannot be expected to belong to @{term M}.*}
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1068
lemma (in M_axioms) is_funspace_abs [simp]:
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1069
     "[|M(A); M(B); M(F); M(A->B)|] ==> is_funspace(M,A,B,F) <-> F = A->B";
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1070
apply (simp add: is_funspace_def)
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1071
apply (rule iffI)
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1072
 prefer 2 apply blast 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1073
apply (rule M_equalityI)
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1074
  apply simp_all
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1075
done
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1076
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1077
lemma (in M_axioms) succ_fun_eq2:
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1078
     "[|M(B); M(n->B)|] ==>
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1079
      succ(n) -> B = 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1080
      \<Union>{z. p \<in> (n->B)*B, \<exists>f[M]. \<exists>b[M]. p = <f,b> & z = {cons(<n,b>, f)}}"
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1081
apply (simp add: succ_fun_eq)
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1082
apply (blast dest: transM)  
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1083
done
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1084
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1085
lemma (in M_axioms) funspace_succ:
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1086
     "[|M(n); M(B); M(n->B) |] ==> M(succ(n) -> B)"
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13299
diff changeset
  1087
apply (insert funspace_succ_replacement [of n], simp) 
13268
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1088
apply (force simp add: succ_fun_eq2 univalent_def) 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1089
done
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1090
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1091
text{*@{term M} contains all finite function spaces.  Needed to prove the
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1092
absoluteness of transitive closure.*}
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1093
lemma (in M_axioms) finite_funspace_closed [intro,simp]:
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1094
     "[|n\<in>nat; M(B)|] ==> M(n->B)"
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1095
apply (induct_tac n, simp)
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1096
apply (simp add: funspace_succ nat_into_M) 
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1097
done
240509babf00 more use of relativized quantifiers
paulson
parents: 13254
diff changeset
  1098
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1099
end