author  wenzelm 
Tue, 13 Jun 2006 23:41:39 +0200  
changeset 19876  11d447d5d68c 
parent 18816  aebd7f315b92 
child 20223  89d2758ecddf 
permissions  rwrr 
9487  1 
(* Title: FOL/FOL.thy 
2 
ID: $Id$ 

3 
Author: Lawrence C Paulson and Markus Wenzel 

11678  4 
*) 
9487  5 

11678  6 
header {* Classical firstorder logic *} 
4093  7 

18456  8 
theory FOL 
15481  9 
imports IFOL 
16417  10 
uses ("FOL_lemmas1.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML") 
18456  11 
begin 
9487  12 

13 

14 
subsection {* The classical axiom *} 

4093  15 

7355
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

16 
axioms 
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

17 
classical: "(~P ==> P) ==> P" 
4093  18 

9487  19 

11678  20 
subsection {* Lemmas and proof tools *} 
9487  21 

7355
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

22 
use "FOL_lemmas1.ML" 
12127
219e543496a3
theorems case_split = case_split_thm [case_names True False, cases type: o];
wenzelm
parents:
11988
diff
changeset

23 
theorems case_split = case_split_thm [case_names True False, cases type: o] 
9525  24 

10383  25 
use "cladata.ML" 
26 
setup Cla.setup 

14156  27 
setup cla_setup 
28 
setup case_setup 

10383  29 

9487  30 
use "blastdata.ML" 
31 
setup Blast.setup 

13550  32 

33 

34 
lemma ex1_functional: "[ EX! z. P(a,z); P(a,b); P(a,c) ] ==> b = c" 

35 
by blast 

36 

37 
ML {* 

38 
val ex1_functional = thm "ex1_functional"; 

39 
*} 

9487  40 

41 
use "simpdata.ML" 

42 
setup simpsetup 

43 
setup "Simplifier.method_setup Splitter.split_modifiers" 

44 
setup Splitter.setup 

45 
setup Clasimp.setup 

18591  46 
setup EqSubst.setup 
15481  47 

48 

14085  49 
subsection {* Other simple lemmas *} 
50 

51 
lemma [simp]: "((P>R) <> (Q>R)) <> ((P<>Q)  R)" 

52 
by blast 

53 

54 
lemma [simp]: "((P>Q) <> (P>R)) <> (P > (Q<>R))" 

55 
by blast 

56 

57 
lemma not_disj_iff_imp: "~P  Q <> (P>Q)" 

58 
by blast 

59 

60 
(** Monotonicity of implications **) 

61 

62 
lemma conj_mono: "[ P1>Q1; P2>Q2 ] ==> (P1&P2) > (Q1&Q2)" 

63 
by fast (*or (IntPr.fast_tac 1)*) 

64 

65 
lemma disj_mono: "[ P1>Q1; P2>Q2 ] ==> (P1P2) > (Q1Q2)" 

66 
by fast (*or (IntPr.fast_tac 1)*) 

67 

68 
lemma imp_mono: "[ Q1>P1; P2>Q2 ] ==> (P1>P2)>(Q1>Q2)" 

69 
by fast (*or (IntPr.fast_tac 1)*) 

70 

71 
lemma imp_refl: "P>P" 

72 
by (rule impI, assumption) 

73 

74 
(*The quantifier monotonicity rules are also intuitionistically valid*) 

75 
lemma ex_mono: "(!!x. P(x) > Q(x)) ==> (EX x. P(x)) > (EX x. Q(x))" 

76 
by blast 

77 

78 
lemma all_mono: "(!!x. P(x) > Q(x)) ==> (ALL x. P(x)) > (ALL x. Q(x))" 

79 
by blast 

80 

11678  81 

82 
subsection {* Proof by cases and induction *} 

83 

84 
text {* Proper handling of nonatomic rule statements. *} 

85 

86 
constdefs 

18456  87 
induct_forall where "induct_forall(P) == \<forall>x. P(x)" 
88 
induct_implies where "induct_implies(A, B) == A \<longrightarrow> B" 

89 
induct_equal where "induct_equal(x, y) == x = y" 

90 
induct_conj where "induct_conj(A, B) == A \<and> B" 

11678  91 

92 
lemma induct_forall_eq: "(!!x. P(x)) == Trueprop(induct_forall(\<lambda>x. P(x)))" 

18816  93 
unfolding atomize_all induct_forall_def . 
11678  94 

95 
lemma induct_implies_eq: "(A ==> B) == Trueprop(induct_implies(A, B))" 

18816  96 
unfolding atomize_imp induct_implies_def . 
11678  97 

98 
lemma induct_equal_eq: "(x == y) == Trueprop(induct_equal(x, y))" 

18816  99 
unfolding atomize_eq induct_equal_def . 
11678  100 

18456  101 
lemma induct_conj_eq: 
102 
includes meta_conjunction_syntax 

103 
shows "(A && B) == Trueprop(induct_conj(A, B))" 

18816  104 
unfolding atomize_conj induct_conj_def . 
11988  105 

18456  106 
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq 
107 
lemmas induct_rulify [symmetric, standard] = induct_atomize 

108 
lemmas induct_rulify_fallback = 

109 
induct_forall_def induct_implies_def induct_equal_def induct_conj_def 

11678  110 

18456  111 
hide const induct_forall induct_implies induct_equal induct_conj 
11678  112 

113 

114 
text {* Method setup. *} 

115 

116 
ML {* 

117 
structure InductMethod = InductMethodFun 

118 
(struct 

119 
val cases_default = thm "case_split"; 

120 
val atomize = thms "induct_atomize"; 

18456  121 
val rulify = thms "induct_rulify"; 
122 
val rulify_fallback = thms "induct_rulify_fallback"; 

11678  123 
end); 
124 
*} 

125 

126 
setup InductMethod.setup 

127 

4854  128 
end 