3115

1 
(* Title: FOL/ex/Nat.thy

0

2 
ID: $Id$

1473

3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory

0

4 
Copyright 1992 University of Cambridge


5 
*)


6 

17245

7 
header {* Theory of the natural numbers: Peano's axioms, primitive recursion *}


8 


9 
theory Nat


10 
imports FOL


11 
begin


12 


13 
typedecl nat


14 
arities nat :: "term"


15 


16 
consts


17 
0 :: nat ("0")


18 
Suc :: "nat => nat"


19 
rec :: "[nat, 'a, [nat,'a]=>'a] => 'a"


20 
add :: "[nat, nat] => nat" (infixl "+" 60)


21 


22 
axioms


23 
induct: "[ P(0); !!x. P(x) ==> P(Suc(x)) ] ==> P(n)"


24 
Suc_inject: "Suc(m)=Suc(n) ==> m=n"


25 
Suc_neq_0: "Suc(m)=0 ==> R"


26 
rec_0: "rec(0,a,f) = a"


27 
rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m,a,f))"


28 
add_def: "m+n == rec(m, n, %x y. Suc(y))"


29 


30 
ML {* use_legacy_bindings (the_context ()) *}


31 

0

32 
end
