4776
|
1 |
(* Title: HOL/UNITY/WFair
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1998 University of Cambridge
|
|
5 |
|
|
6 |
Weak Fairness versions of transient, ensures, leadsTo.
|
|
7 |
|
|
8 |
From Misra, "A Logic for Concurrent Programming", 1994
|
|
9 |
*)
|
|
10 |
|
|
11 |
open WFair;
|
|
12 |
|
|
13 |
goal thy "Union(B) Int A = Union((%C. C Int A)``B)";
|
|
14 |
by (Blast_tac 1);
|
|
15 |
qed "Int_Union_Union";
|
|
16 |
|
|
17 |
|
|
18 |
(*** transient ***)
|
|
19 |
|
|
20 |
goalw thy [stable_def, constrains_def, transient_def]
|
|
21 |
"!!A. [| stable Acts A; transient Acts A |] ==> A = {}";
|
|
22 |
by (Blast_tac 1);
|
|
23 |
qed "stable_transient_empty";
|
|
24 |
|
|
25 |
goalw thy [transient_def]
|
|
26 |
"!!A. [| transient Acts A; B<=A |] ==> transient Acts B";
|
|
27 |
by (Clarify_tac 1);
|
|
28 |
by (rtac bexI 1 THEN assume_tac 2);
|
|
29 |
by (Blast_tac 1);
|
|
30 |
qed "transient_strengthen";
|
|
31 |
|
|
32 |
goalw thy [transient_def]
|
|
33 |
"!!A. [| act:Acts; A <= Domain act; act^^A <= Compl A |] \
|
|
34 |
\ ==> transient Acts A";
|
|
35 |
by (Blast_tac 1);
|
|
36 |
qed "transient_mem";
|
|
37 |
|
|
38 |
|
|
39 |
(*** ensures ***)
|
|
40 |
|
|
41 |
goalw thy [ensures_def]
|
|
42 |
"!!Acts. [| constrains Acts (A-B) (A Un B); transient Acts (A-B) |] \
|
|
43 |
\ ==> ensures Acts A B";
|
|
44 |
by (Blast_tac 1);
|
|
45 |
qed "ensuresI";
|
|
46 |
|
|
47 |
goalw thy [ensures_def]
|
|
48 |
"!!Acts. ensures Acts A B \
|
|
49 |
\ ==> constrains Acts (A-B) (A Un B) & transient Acts (A-B)";
|
|
50 |
by (Blast_tac 1);
|
|
51 |
qed "ensuresD";
|
|
52 |
|
|
53 |
(*The L-version (precondition strengthening) doesn't hold for ENSURES*)
|
|
54 |
goalw thy [ensures_def]
|
|
55 |
"!!Acts. [| ensures Acts A A'; A'<=B' |] ==> ensures Acts A B'";
|
|
56 |
by (blast_tac (claset() addIs [constrains_weaken, transient_strengthen]) 1);
|
|
57 |
qed "ensures_weaken_R";
|
|
58 |
|
|
59 |
goalw thy [ensures_def, constrains_def, transient_def]
|
|
60 |
"!!Acts. Acts ~= {} ==> ensures Acts A UNIV";
|
|
61 |
by (Asm_simp_tac 1); (*omitting this causes PROOF FAILED, even with Safe_tac*)
|
|
62 |
by (Blast_tac 1);
|
|
63 |
qed "ensures_UNIV";
|
|
64 |
|
|
65 |
goalw thy [ensures_def]
|
|
66 |
"!!Acts. [| stable Acts C; \
|
|
67 |
\ constrains Acts (C Int (A - A')) (A Un A'); \
|
|
68 |
\ transient Acts (C Int (A-A')) |] \
|
|
69 |
\ ==> ensures Acts (C Int A) (C Int A')";
|
|
70 |
by (asm_simp_tac (simpset() addsimps [Int_Un_distrib RS sym,
|
|
71 |
Diff_Int_distrib RS sym,
|
|
72 |
stable_constrains_Int]) 1);
|
|
73 |
qed "stable_ensures_Int";
|
|
74 |
|
|
75 |
|
|
76 |
(*** leadsTo ***)
|
|
77 |
|
|
78 |
(*Synonyms for the theorems produced by the inductive defn package*)
|
|
79 |
bind_thm ("leadsTo_Basis", leadsto.Basis);
|
|
80 |
bind_thm ("leadsTo_Trans", leadsto.Trans);
|
|
81 |
|
|
82 |
goal thy "!!Acts. act: Acts ==> leadsTo Acts A UNIV";
|
|
83 |
by (blast_tac (claset() addIs [ensures_UNIV RS leadsTo_Basis]) 1);
|
|
84 |
qed "leadsTo_UNIV";
|
|
85 |
Addsimps [leadsTo_UNIV];
|
|
86 |
|
|
87 |
(*Useful with cancellation, disjunction*)
|
|
88 |
goal thy "!!Acts. leadsTo Acts A (A' Un A') ==> leadsTo Acts A A'";
|
|
89 |
by (asm_full_simp_tac (simpset() addsimps Un_ac) 1);
|
|
90 |
qed "leadsTo_Un_duplicate";
|
|
91 |
|
|
92 |
goal thy "!!Acts. leadsTo Acts A (A' Un C Un C) ==> leadsTo Acts A (A' Un C)";
|
|
93 |
by (asm_full_simp_tac (simpset() addsimps Un_ac) 1);
|
|
94 |
qed "leadsTo_Un_duplicate2";
|
|
95 |
|
|
96 |
(*The Union introduction rule as we should have liked to state it*)
|
|
97 |
val prems = goal thy
|
|
98 |
"(!!A. A : S ==> leadsTo Acts A B) ==> leadsTo Acts (Union S) B";
|
|
99 |
by (blast_tac (claset() addIs (leadsto.Union::prems)) 1);
|
|
100 |
qed "leadsTo_Union";
|
|
101 |
|
|
102 |
val prems = goal thy
|
|
103 |
"(!!i. i : I ==> leadsTo Acts (A i) B) ==> leadsTo Acts (UN i:I. A i) B";
|
|
104 |
by (simp_tac (simpset() addsimps [Union_image_eq RS sym]) 1);
|
|
105 |
by (blast_tac (claset() addIs (leadsto.Union::prems)) 1);
|
|
106 |
qed "leadsTo_UN";
|
|
107 |
|
|
108 |
(*Binary union introduction rule*)
|
|
109 |
goal thy
|
|
110 |
"!!C. [| leadsTo Acts A C; leadsTo Acts B C |] ==> leadsTo Acts (A Un B) C";
|
|
111 |
by (stac Un_eq_Union 1);
|
|
112 |
by (blast_tac (claset() addIs [leadsTo_Union]) 1);
|
|
113 |
qed "leadsTo_Un";
|
|
114 |
|
|
115 |
|
|
116 |
(*The INDUCTION rule as we should have liked to state it*)
|
|
117 |
val major::prems = goal thy
|
|
118 |
"[| leadsTo Acts za zb; \
|
|
119 |
\ !!A B. ensures Acts A B ==> P A B; \
|
|
120 |
\ !!A B C. [| leadsTo Acts A B; P A B; leadsTo Acts B C; P B C |] \
|
|
121 |
\ ==> P A C; \
|
|
122 |
\ !!B S. ALL A:S. leadsTo Acts A B & P A B ==> P (Union S) B \
|
|
123 |
\ |] ==> P za zb";
|
|
124 |
br (major RS leadsto.induct) 1;
|
|
125 |
by (REPEAT (blast_tac (claset() addIs prems) 1));
|
|
126 |
qed "leadsTo_induct";
|
|
127 |
|
|
128 |
|
|
129 |
goal thy "!!A B. [| A<=B; id: Acts |] ==> leadsTo Acts A B";
|
|
130 |
by (rtac leadsTo_Basis 1);
|
|
131 |
by (rewrite_goals_tac [ensures_def, constrains_def, transient_def]);
|
|
132 |
by (Blast_tac 1);
|
|
133 |
qed "subset_imp_leadsTo";
|
|
134 |
|
|
135 |
bind_thm ("empty_leadsTo", empty_subsetI RS subset_imp_leadsTo);
|
|
136 |
Addsimps [empty_leadsTo];
|
|
137 |
|
|
138 |
|
|
139 |
(*There's a direct proof by leadsTo_Trans and subset_imp_leadsTo, but it
|
|
140 |
needs the extra premise id:Acts*)
|
|
141 |
goal thy "!!Acts. leadsTo Acts A A' ==> A'<=B' --> leadsTo Acts A B'";
|
|
142 |
by (etac leadsTo_induct 1);
|
|
143 |
by (Clarify_tac 3);
|
|
144 |
by (blast_tac (claset() addIs [leadsTo_Union]) 3);
|
|
145 |
by (blast_tac (claset() addIs [leadsTo_Trans]) 2);
|
|
146 |
by (blast_tac (claset() addIs [leadsTo_Basis, ensures_weaken_R]) 1);
|
|
147 |
qed_spec_mp "leadsTo_weaken_R";
|
|
148 |
|
|
149 |
|
|
150 |
goal thy "!!Acts. [| leadsTo Acts A A'; B<=A; id: Acts |] ==> \
|
|
151 |
\ leadsTo Acts B A'";
|
|
152 |
by (blast_tac (claset() addIs [leadsTo_Basis, leadsTo_Trans,
|
|
153 |
subset_imp_leadsTo]) 1);
|
|
154 |
qed_spec_mp "leadsTo_weaken_L";
|
|
155 |
|
|
156 |
(*Distributes over binary unions*)
|
|
157 |
goal thy
|
|
158 |
"!!C. id: Acts ==> \
|
|
159 |
\ leadsTo Acts (A Un B) C = (leadsTo Acts A C & leadsTo Acts B C)";
|
|
160 |
by (blast_tac (claset() addIs [leadsTo_Un, leadsTo_weaken_L]) 1);
|
|
161 |
qed "leadsTo_Un_distrib";
|
|
162 |
|
|
163 |
goal thy
|
|
164 |
"!!C. id: Acts ==> \
|
|
165 |
\ leadsTo Acts (UN i:I. A i) B = (ALL i : I. leadsTo Acts (A i) B)";
|
|
166 |
by (blast_tac (claset() addIs [leadsTo_UN, leadsTo_weaken_L]) 1);
|
|
167 |
qed "leadsTo_UN_distrib";
|
|
168 |
|
|
169 |
goal thy
|
|
170 |
"!!C. id: Acts ==> \
|
|
171 |
\ leadsTo Acts (Union S) B = (ALL A : S. leadsTo Acts A B)";
|
|
172 |
by (blast_tac (claset() addIs [leadsTo_Union, leadsTo_weaken_L]) 1);
|
|
173 |
qed "leadsTo_Union_distrib";
|
|
174 |
|
|
175 |
|
|
176 |
goal thy
|
|
177 |
"!!Acts. [| leadsTo Acts A A'; id: Acts; B<=A; A'<=B' |] \
|
|
178 |
\ ==> leadsTo Acts B B'";
|
|
179 |
(*PROOF FAILED: why?*)
|
|
180 |
by (blast_tac (claset() addIs [leadsTo_Trans, leadsTo_weaken_R,
|
|
181 |
leadsTo_weaken_L]) 1);
|
|
182 |
qed "leadsTo_weaken";
|
|
183 |
|
|
184 |
|
|
185 |
(*Set difference: maybe combine with leadsTo_weaken_L??*)
|
|
186 |
goal thy
|
|
187 |
"!!C. [| leadsTo Acts (A-B) C; leadsTo Acts B C; id: Acts |] \
|
|
188 |
\ ==> leadsTo Acts A C";
|
|
189 |
by (blast_tac (claset() addIs [leadsTo_Un, leadsTo_weaken]) 1);
|
|
190 |
qed "leadsTo_Diff";
|
|
191 |
|
|
192 |
|
|
193 |
(** Meta or object quantifier ???
|
|
194 |
see ball_constrains_UN in UNITY.ML***)
|
|
195 |
|
|
196 |
val prems = goal thy
|
|
197 |
"(!! i. i:I ==> leadsTo Acts (A i) (A' i)) \
|
|
198 |
\ ==> leadsTo Acts (UN i:I. A i) (UN i:I. A' i)";
|
|
199 |
by (simp_tac (simpset() addsimps [Union_image_eq RS sym]) 1);
|
|
200 |
by (blast_tac (claset() addIs [leadsTo_Union, leadsTo_weaken_R]
|
|
201 |
addIs prems) 1);
|
|
202 |
qed "leadsTo_UN_UN";
|
|
203 |
|
|
204 |
|
|
205 |
(*Version with no index set*)
|
|
206 |
val prems = goal thy
|
|
207 |
"(!! i. leadsTo Acts (A i) (A' i)) \
|
|
208 |
\ ==> leadsTo Acts (UN i. A i) (UN i. A' i)";
|
|
209 |
by (blast_tac (claset() addIs [leadsTo_UN_UN]
|
|
210 |
addIs prems) 1);
|
|
211 |
qed "leadsTo_UN_UN_noindex";
|
|
212 |
|
|
213 |
(*Version with no index set*)
|
|
214 |
goal thy
|
|
215 |
"!!Acts. ALL i. leadsTo Acts (A i) (A' i) \
|
|
216 |
\ ==> leadsTo Acts (UN i. A i) (UN i. A' i)";
|
|
217 |
by (blast_tac (claset() addIs [leadsTo_UN_UN]) 1);
|
|
218 |
qed "all_leadsTo_UN_UN";
|
|
219 |
|
|
220 |
|
|
221 |
(*Binary union version*)
|
|
222 |
goal thy "!!Acts. [| leadsTo Acts A A'; leadsTo Acts B B' |] \
|
|
223 |
\ ==> leadsTo Acts (A Un B) (A' Un B')";
|
|
224 |
by (blast_tac (claset() addIs [leadsTo_Un,
|
|
225 |
leadsTo_weaken_R]) 1);
|
|
226 |
qed "leadsTo_Un_Un";
|
|
227 |
|
|
228 |
|
|
229 |
(** The cancellation law **)
|
|
230 |
|
|
231 |
goal thy
|
|
232 |
"!!Acts. [| leadsTo Acts A (A' Un B); leadsTo Acts B B'; id: Acts |] \
|
|
233 |
\ ==> leadsTo Acts A (A' Un B')";
|
|
234 |
by (blast_tac (claset() addIs [leadsTo_Un_Un,
|
|
235 |
subset_imp_leadsTo, leadsTo_Trans]) 1);
|
|
236 |
qed "leadsTo_cancel2";
|
|
237 |
|
|
238 |
goal thy
|
|
239 |
"!!Acts. [| leadsTo Acts A (A' Un B); leadsTo Acts (B-A') B'; id: Acts |] \
|
|
240 |
\ ==> leadsTo Acts A (A' Un B')";
|
|
241 |
by (rtac leadsTo_cancel2 1);
|
|
242 |
by (assume_tac 2);
|
|
243 |
by (ALLGOALS Asm_simp_tac);
|
|
244 |
qed "leadsTo_cancel_Diff2";
|
|
245 |
|
|
246 |
goal thy
|
|
247 |
"!!Acts. [| leadsTo Acts A (B Un A'); leadsTo Acts B B'; id: Acts |] \
|
|
248 |
\ ==> leadsTo Acts A (B' Un A')";
|
|
249 |
by (asm_full_simp_tac (simpset() addsimps [Un_commute]) 1);
|
|
250 |
by (blast_tac (claset() addSIs [leadsTo_cancel2]) 1);
|
|
251 |
qed "leadsTo_cancel1";
|
|
252 |
|
|
253 |
goal thy
|
|
254 |
"!!Acts. [| leadsTo Acts A (B Un A'); leadsTo Acts (B-A') B'; id: Acts |] \
|
|
255 |
\ ==> leadsTo Acts A (B' Un A')";
|
|
256 |
by (rtac leadsTo_cancel1 1);
|
|
257 |
by (assume_tac 2);
|
|
258 |
by (ALLGOALS Asm_simp_tac);
|
|
259 |
qed "leadsTo_cancel_Diff1";
|
|
260 |
|
|
261 |
|
|
262 |
|
|
263 |
(** The impossibility law **)
|
|
264 |
|
|
265 |
goal thy "!!Acts. leadsTo Acts A B ==> B={} --> A={}";
|
|
266 |
by (etac leadsTo_induct 1);
|
|
267 |
by (ALLGOALS Asm_simp_tac);
|
|
268 |
by (rewrite_goals_tac [ensures_def, constrains_def, transient_def]);
|
|
269 |
by (Blast_tac 1);
|
|
270 |
val lemma = result() RS mp;
|
|
271 |
|
|
272 |
goal thy "!!Acts. leadsTo Acts A {} ==> A={}";
|
|
273 |
by (blast_tac (claset() addSIs [lemma]) 1);
|
|
274 |
qed "leadsTo_empty";
|
|
275 |
|
|
276 |
|
|
277 |
(** PSP: Progress-Safety-Progress **)
|
|
278 |
|
|
279 |
(*Special case of PSP: Misra's "stable conjunction". Doesn't need id:Acts. *)
|
|
280 |
goalw thy [stable_def]
|
|
281 |
"!!Acts. [| leadsTo Acts A A'; stable Acts B |] \
|
|
282 |
\ ==> leadsTo Acts (A Int B) (A' Int B)";
|
|
283 |
by (etac leadsTo_induct 1);
|
|
284 |
by (simp_tac (simpset() addsimps [Int_Union_Union]) 3);
|
|
285 |
by (blast_tac (claset() addIs [leadsTo_Union]) 3);
|
|
286 |
by (blast_tac (claset() addIs [leadsTo_Trans]) 2);
|
|
287 |
by (rtac leadsTo_Basis 1);
|
|
288 |
by (asm_full_simp_tac
|
|
289 |
(simpset() addsimps [ensures_def,
|
|
290 |
Diff_Int_distrib2 RS sym, Int_Un_distrib2 RS sym]) 1);
|
|
291 |
by (blast_tac (claset() addIs [transient_strengthen, constrains_Int]) 1);
|
|
292 |
qed "PSP_stable";
|
|
293 |
|
|
294 |
goal thy
|
|
295 |
"!!Acts. [| leadsTo Acts A A'; stable Acts B |] \
|
|
296 |
\ ==> leadsTo Acts (B Int A) (B Int A')";
|
|
297 |
by (asm_simp_tac (simpset() addsimps (PSP_stable::Int_ac)) 1);
|
|
298 |
qed "PSP_stable2";
|
|
299 |
|
|
300 |
|
|
301 |
goalw thy [ensures_def]
|
|
302 |
"!!Acts. [| ensures Acts A A'; constrains Acts B B' |] \
|
|
303 |
\ ==> ensures Acts (A Int B) ((A' Int B) Un (B' - B))";
|
|
304 |
by Safe_tac;
|
|
305 |
by (blast_tac (claset() addIs [constrainsI] addDs [constrainsD]) 1);
|
|
306 |
by (etac transient_strengthen 1);
|
|
307 |
by (Blast_tac 1);
|
|
308 |
qed "PSP_ensures";
|
|
309 |
|
|
310 |
|
|
311 |
goal thy
|
|
312 |
"!!Acts. [| leadsTo Acts A A'; constrains Acts B B'; id: Acts |] \
|
|
313 |
\ ==> leadsTo Acts (A Int B) ((A' Int B) Un (B' - B))";
|
|
314 |
by (etac leadsTo_induct 1);
|
|
315 |
by (simp_tac (simpset() addsimps [Int_Union_Union]) 3);
|
|
316 |
by (blast_tac (claset() addIs [leadsTo_Union]) 3);
|
|
317 |
(*Transitivity case has a delicate argument involving "cancellation"*)
|
|
318 |
by (rtac leadsTo_Un_duplicate2 2);
|
|
319 |
by (etac leadsTo_cancel_Diff1 2);
|
|
320 |
by (assume_tac 3);
|
|
321 |
by (asm_full_simp_tac (simpset() addsimps [Int_Diff, Diff_triv]) 2);
|
|
322 |
(*Basis case*)
|
|
323 |
by (blast_tac (claset() addIs [leadsTo_Basis, PSP_ensures]) 1);
|
|
324 |
qed "PSP";
|
|
325 |
|
|
326 |
goal thy
|
|
327 |
"!!Acts. [| leadsTo Acts A A'; constrains Acts B B'; id: Acts |] \
|
|
328 |
\ ==> leadsTo Acts (B Int A) ((B Int A') Un (B' - B))";
|
|
329 |
by (asm_simp_tac (simpset() addsimps (PSP::Int_ac)) 1);
|
|
330 |
qed "PSP2";
|
|
331 |
|
|
332 |
|
|
333 |
goalw thy [unless_def]
|
|
334 |
"!!Acts. [| leadsTo Acts A A'; unless Acts B B'; id: Acts |] \
|
|
335 |
\ ==> leadsTo Acts (A Int B) ((A' Int B) Un B')";
|
|
336 |
by (dtac PSP 1);
|
|
337 |
by (assume_tac 1);
|
|
338 |
by (asm_full_simp_tac (simpset() addsimps [Un_Diff_Diff, Int_Diff_Un]) 2);
|
|
339 |
by (asm_full_simp_tac (simpset() addsimps [Diff_Int_distrib]) 2);
|
|
340 |
by (etac leadsTo_Diff 2);
|
|
341 |
by (blast_tac (claset() addIs [subset_imp_leadsTo]) 2);
|
|
342 |
by Auto_tac;
|
|
343 |
qed "PSP_unless";
|
|
344 |
|
|
345 |
|
|
346 |
(*** Proving the induction rules ***)
|
|
347 |
|
|
348 |
goal thy
|
|
349 |
"!!Acts. [| wf r; \
|
|
350 |
\ ALL m. leadsTo Acts (A Int f-``{m}) \
|
|
351 |
\ ((A Int f-``(r^-1 ^^ {m})) Un B); \
|
|
352 |
\ id: Acts |] \
|
|
353 |
\ ==> leadsTo Acts (A Int f-``{m}) B";
|
|
354 |
by (eres_inst_tac [("a","m")] wf_induct 1);
|
|
355 |
by (subgoal_tac "leadsTo Acts (A Int (f -`` (r^-1 ^^ {x}))) B" 1);
|
|
356 |
by (stac vimage_eq_UN 2);
|
|
357 |
by (asm_simp_tac (HOL_ss addsimps (UN_simps RL [sym])) 2);
|
|
358 |
by (blast_tac (claset() addIs [leadsTo_UN]) 2);
|
|
359 |
by (blast_tac (claset() addIs [leadsTo_cancel1, leadsTo_Un_duplicate]) 1);
|
|
360 |
val lemma = result();
|
|
361 |
|
|
362 |
|
|
363 |
(** Meta or object quantifier ????? **)
|
|
364 |
goal thy
|
|
365 |
"!!Acts. [| wf r; \
|
|
366 |
\ ALL m. leadsTo Acts (A Int f-``{m}) \
|
|
367 |
\ ((A Int f-``(r^-1 ^^ {m})) Un B); \
|
|
368 |
\ id: Acts |] \
|
|
369 |
\ ==> leadsTo Acts A B";
|
|
370 |
by (res_inst_tac [("t", "A")] subst 1);
|
|
371 |
by (rtac leadsTo_UN 2);
|
|
372 |
by (etac lemma 2);
|
|
373 |
by (REPEAT (assume_tac 2));
|
|
374 |
by (Fast_tac 1); (*Blast_tac: Function unknown's argument not a parameter*)
|
|
375 |
qed "leadsTo_wf_induct";
|
|
376 |
|
|
377 |
|
|
378 |
goal thy
|
|
379 |
"!!Acts. [| wf r; \
|
|
380 |
\ ALL m:I. leadsTo Acts (A Int f-``{m}) \
|
|
381 |
\ ((A Int f-``(r^-1 ^^ {m})) Un B); \
|
|
382 |
\ id: Acts |] \
|
|
383 |
\ ==> leadsTo Acts A ((A - (f-``I)) Un B)";
|
|
384 |
by (etac leadsTo_wf_induct 1);
|
|
385 |
by Safe_tac;
|
|
386 |
by (case_tac "m:I" 1);
|
|
387 |
by (blast_tac (claset() addIs [leadsTo_weaken]) 1);
|
|
388 |
by (blast_tac (claset() addIs [subset_imp_leadsTo]) 1);
|
|
389 |
qed "bounded_induct";
|
|
390 |
|
|
391 |
|
|
392 |
(*Alternative proof is via the lemma leadsTo Acts (A Int f-``(lessThan m)) B*)
|
|
393 |
goal thy
|
|
394 |
"!!Acts. [| ALL m. leadsTo Acts (A Int f-``{m}) \
|
|
395 |
\ ((A Int f-``(lessThan m)) Un B); \
|
|
396 |
\ id: Acts |] \
|
|
397 |
\ ==> leadsTo Acts A B";
|
|
398 |
by (rtac (wf_less_than RS leadsTo_wf_induct) 1);
|
|
399 |
by (assume_tac 2);
|
|
400 |
by (Asm_simp_tac 1);
|
|
401 |
qed "lessThan_induct";
|
|
402 |
|
|
403 |
goal thy
|
|
404 |
"!!Acts. [| ALL m:(greaterThan l). leadsTo Acts (A Int f-``{m}) \
|
|
405 |
\ ((A Int f-``(lessThan m)) Un B); \
|
|
406 |
\ id: Acts |] \
|
|
407 |
\ ==> leadsTo Acts A ((A Int (f-``(atMost l))) Un B)";
|
|
408 |
by (simp_tac (HOL_ss addsimps [Diff_eq RS sym, vimage_Compl, Compl_greaterThan RS sym]) 1);
|
|
409 |
by (rtac (wf_less_than RS bounded_induct) 1);
|
|
410 |
by (assume_tac 2);
|
|
411 |
by (Asm_simp_tac 1);
|
|
412 |
qed "lessThan_bounded_induct";
|
|
413 |
|
|
414 |
goal thy
|
|
415 |
"!!Acts. [| ALL m:(lessThan l). leadsTo Acts (A Int f-``{m}) \
|
|
416 |
\ ((A Int f-``(greaterThan m)) Un B); \
|
|
417 |
\ id: Acts |] \
|
|
418 |
\ ==> leadsTo Acts A ((A Int (f-``(atLeast l))) Un B)";
|
|
419 |
by (res_inst_tac [("f","f"),("f1", "%k. l - k")]
|
|
420 |
(wf_less_than RS wf_inv_image RS leadsTo_wf_induct) 1);
|
|
421 |
by (assume_tac 2);
|
|
422 |
by (simp_tac (simpset() addsimps [inv_image_def, Image_singleton]) 1);
|
|
423 |
by (Clarify_tac 1);
|
|
424 |
by (case_tac "m<l" 1);
|
|
425 |
by (blast_tac (claset() addIs [not_leE, subset_imp_leadsTo]) 2);
|
|
426 |
by (blast_tac (claset() addIs [leadsTo_weaken_R, diff_less_mono2]) 1);
|
|
427 |
qed "greaterThan_bounded_induct";
|
|
428 |
|
|
429 |
|
|
430 |
|
|
431 |
(*** wlt ****)
|
|
432 |
|
|
433 |
(*Misra's property W3*)
|
|
434 |
goalw thy [wlt_def] "leadsTo Acts (wlt Acts B) B";
|
|
435 |
by (blast_tac (claset() addSIs [leadsTo_Union]) 1);
|
|
436 |
qed "wlt_leadsTo";
|
|
437 |
|
|
438 |
goalw thy [wlt_def] "!!Acts. leadsTo Acts A B ==> A <= wlt Acts B";
|
|
439 |
by (blast_tac (claset() addSIs [leadsTo_Union]) 1);
|
|
440 |
qed "leadsTo_subset";
|
|
441 |
|
|
442 |
(*Misra's property W2*)
|
|
443 |
goal thy "!!Acts. id: Acts ==> leadsTo Acts A B = (A <= wlt Acts B)";
|
|
444 |
by (blast_tac (claset() addSIs [leadsTo_subset,
|
|
445 |
wlt_leadsTo RS leadsTo_weaken_L]) 1);
|
|
446 |
qed "leadsTo_eq_subset_wlt";
|
|
447 |
|
|
448 |
(*Misra's property W4*)
|
|
449 |
goal thy "!!Acts. id: Acts ==> B <= wlt Acts B";
|
|
450 |
by (asm_simp_tac (simpset() addsimps [leadsTo_eq_subset_wlt RS sym,
|
|
451 |
subset_imp_leadsTo]) 1);
|
|
452 |
qed "wlt_increasing";
|
|
453 |
|
|
454 |
|
|
455 |
(*Used in the Trans case below*)
|
|
456 |
goalw thy [constrains_def]
|
|
457 |
"!!Acts. [| B <= A2; \
|
|
458 |
\ constrains Acts (A1 - B) (A1 Un B); \
|
|
459 |
\ constrains Acts (A2 - C) (A2 Un C) |] \
|
|
460 |
\ ==> constrains Acts (A1 Un A2 - C) (A1 Un A2 Un C)";
|
|
461 |
by (Clarify_tac 1);
|
|
462 |
by (blast_tac (claset() addSDs [bspec]) 1);
|
|
463 |
val lemma1 = result();
|
|
464 |
|
|
465 |
|
|
466 |
(*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*)
|
|
467 |
goal thy
|
|
468 |
"!!Acts. [| leadsTo Acts A A'; id: Acts |] ==> \
|
|
469 |
\ EX B. A<=B & leadsTo Acts B A' & constrains Acts (B-A') (B Un A')";
|
|
470 |
by (etac leadsTo_induct 1);
|
|
471 |
(*Basis*)
|
|
472 |
by (blast_tac (claset() addIs [leadsTo_Basis]
|
|
473 |
addDs [ensuresD]) 1);
|
|
474 |
(*Trans*)
|
|
475 |
by (Clarify_tac 1);
|
|
476 |
by (res_inst_tac [("x", "Ba Un Bb")] exI 1);
|
|
477 |
by (blast_tac (claset() addIs [lemma1, leadsTo_Un_Un, leadsTo_cancel1,
|
|
478 |
leadsTo_Un_duplicate]) 1);
|
|
479 |
(*Union*)
|
|
480 |
by (clarify_tac (claset() addSDs [ball_conj_distrib RS iffD1,
|
|
481 |
bchoice, ball_constrains_UN]) 1);;
|
|
482 |
by (res_inst_tac [("x", "UN A:S. f A")] exI 1);
|
|
483 |
by (blast_tac (claset() addIs [leadsTo_UN, constrains_weaken]) 1);
|
|
484 |
qed "leadsTo_123";
|
|
485 |
|
|
486 |
|
|
487 |
(*Misra's property W5*)
|
|
488 |
goal thy "!!Acts. id: Acts ==> constrains Acts (wlt Acts B - B) (wlt Acts B)";
|
|
489 |
by (forward_tac [wlt_leadsTo RS leadsTo_123] 1);
|
|
490 |
by (Clarify_tac 1);
|
|
491 |
by (subgoal_tac "Ba = wlt Acts B" 1);
|
|
492 |
by (blast_tac (claset() addDs [leadsTo_eq_subset_wlt]) 2);
|
|
493 |
by (Clarify_tac 1);
|
|
494 |
by (asm_full_simp_tac (simpset() addsimps [wlt_increasing, Un_absorb2]) 1);
|
|
495 |
qed "wlt_constrains_wlt";
|
|
496 |
|
|
497 |
|
|
498 |
(*** Completion: Binary and General Finite versions ***)
|
|
499 |
|
|
500 |
goal thy
|
|
501 |
"!!Acts. [| leadsTo Acts A A'; stable Acts A'; \
|
|
502 |
\ leadsTo Acts B B'; stable Acts B'; id: Acts |] \
|
|
503 |
\ ==> leadsTo Acts (A Int B) (A' Int B')";
|
|
504 |
by (subgoal_tac "stable Acts (wlt Acts B')" 1);
|
|
505 |
by (asm_full_simp_tac (simpset() addsimps [stable_def]) 2);
|
|
506 |
by (EVERY [etac (constrains_Un RS constrains_weaken) 2,
|
|
507 |
etac wlt_constrains_wlt 2,
|
|
508 |
fast_tac (claset() addEs [wlt_increasing RSN (2,rev_subsetD)]) 3,
|
|
509 |
Blast_tac 2]);
|
|
510 |
by (subgoal_tac "leadsTo Acts (A Int wlt Acts B') (A' Int wlt Acts B')" 1);
|
|
511 |
by (blast_tac (claset() addIs [PSP_stable]) 2);
|
|
512 |
by (subgoal_tac "leadsTo Acts (A' Int wlt Acts B') (A' Int B')" 1);
|
|
513 |
by (blast_tac (claset() addIs [wlt_leadsTo, PSP_stable2]) 2);
|
|
514 |
by (subgoal_tac "leadsTo Acts (A Int B) (A Int wlt Acts B')" 1);
|
|
515 |
by (blast_tac (claset() addIs [leadsTo_subset RS subsetD,
|
|
516 |
subset_imp_leadsTo]) 2);
|
|
517 |
(*Blast_tac gives PROOF FAILED*)
|
|
518 |
by (best_tac (claset() addIs [leadsTo_Trans]) 1);
|
|
519 |
qed "stable_completion";
|
|
520 |
|
|
521 |
|
|
522 |
goal thy
|
|
523 |
"!!Acts. [| finite I; id: Acts |] \
|
|
524 |
\ ==> (ALL i:I. leadsTo Acts (A i) (A' i)) --> \
|
|
525 |
\ (ALL i:I. stable Acts (A' i)) --> \
|
|
526 |
\ leadsTo Acts (INT i:I. A i) (INT i:I. A' i)";
|
|
527 |
by (etac finite_induct 1);
|
|
528 |
by (Asm_simp_tac 1);
|
|
529 |
by (asm_simp_tac
|
|
530 |
(simpset() addsimps [stable_completion, stable_def,
|
|
531 |
ball_constrains_INT]) 1);
|
|
532 |
qed_spec_mp "finite_stable_completion";
|
|
533 |
|
|
534 |
|
|
535 |
goal thy
|
|
536 |
"!!Acts. [| W = wlt Acts (B' Un C); \
|
|
537 |
\ leadsTo Acts A (A' Un C); constrains Acts A' (A' Un C); \
|
|
538 |
\ leadsTo Acts B (B' Un C); constrains Acts B' (B' Un C); \
|
|
539 |
\ id: Acts |] \
|
|
540 |
\ ==> leadsTo Acts (A Int B) ((A' Int B') Un C)";
|
|
541 |
by (subgoal_tac "constrains Acts (W-C) (W Un B' Un C)" 1);
|
|
542 |
by (blast_tac (claset() addIs [[asm_rl, wlt_constrains_wlt]
|
|
543 |
MRS constrains_Un RS constrains_weaken]) 2);
|
|
544 |
by (subgoal_tac "constrains Acts (W-C) W" 1);
|
|
545 |
by (asm_full_simp_tac
|
|
546 |
(simpset() addsimps [wlt_increasing, Un_assoc, Un_absorb2]) 2);
|
|
547 |
by (subgoal_tac "leadsTo Acts (A Int W - C) (A' Int W Un C)" 1);
|
|
548 |
by (simp_tac (simpset() addsimps [Int_Diff]) 2);
|
|
549 |
by (blast_tac (claset() addIs [wlt_leadsTo, PSP RS leadsTo_weaken_R]) 2);
|
|
550 |
by (subgoal_tac "leadsTo Acts (A' Int W Un C) (A' Int B' Un C)" 1);
|
|
551 |
by (blast_tac (claset() addIs [wlt_leadsTo, leadsTo_Un_Un,
|
|
552 |
PSP2 RS leadsTo_weaken_R,
|
|
553 |
subset_refl RS subset_imp_leadsTo,
|
|
554 |
leadsTo_Un_duplicate2]) 2);
|
|
555 |
by (dtac leadsTo_Diff 1);
|
|
556 |
by (assume_tac 2);
|
|
557 |
by (blast_tac (claset() addIs [subset_imp_leadsTo]) 1);
|
|
558 |
by (subgoal_tac "A Int B <= A Int W" 1);
|
|
559 |
by (blast_tac (claset() addIs [leadsTo_subset, Int_mono]
|
|
560 |
delrules [subsetI]) 2);
|
|
561 |
by (blast_tac (claset() addIs [leadsTo_Trans, subset_imp_leadsTo]) 1);
|
|
562 |
bind_thm("completion", refl RS result());
|
|
563 |
|
|
564 |
|
|
565 |
goal thy
|
|
566 |
"!!Acts. [| finite I; id: Acts |] \
|
|
567 |
\ ==> (ALL i:I. leadsTo Acts (A i) (A' i Un C)) --> \
|
|
568 |
\ (ALL i:I. constrains Acts (A' i) (A' i Un C)) --> \
|
|
569 |
\ leadsTo Acts (INT i:I. A i) ((INT i:I. A' i) Un C)";
|
|
570 |
by (etac finite_induct 1);
|
|
571 |
by (ALLGOALS Asm_simp_tac);
|
|
572 |
by (Clarify_tac 1);
|
|
573 |
by (dtac ball_constrains_INT 1);
|
|
574 |
by (asm_full_simp_tac (simpset() addsimps [completion]) 1);
|
|
575 |
qed "finite_completion";
|
|
576 |
|