author  wenzelm 
Sat, 05 Apr 2014 15:03:40 +0200  
changeset 56421  1ffd7eaa778b 
parent 55380  4de48353034e 
child 58889  5b7a9633cfa8 
permissions  rwrr 
19757  1 
(* Title: LCF/LCF.thy 
1474  2 
Author: Tobias Nipkow 
0  3 
Copyright 1992 University of Cambridge 
4 
*) 

5 

17248  6 
header {* LCF on top of FirstOrder Logic *} 
0  7 

17248  8 
theory LCF 
48475  9 
imports "~~/src/FOL/FOL" 
17248  10 
begin 
0  11 

17248  12 
text {* This theory is based on Lawrence Paulson's book Logic and Computation. *} 
0  13 

17248  14 
subsection {* Natural Deduction Rules for LCF *} 
15 

55380
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
48475
diff
changeset

16 
class cpo = "term" 
36452  17 
default_sort cpo 
17248  18 

19 
typedecl tr 

20 
typedecl void 

41310  21 
typedecl ('a,'b) prod (infixl "*" 6) 
22 
typedecl ('a,'b) sum (infixl "+" 5) 

0  23 

55380
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
48475
diff
changeset

24 
instance "fun" :: (cpo, cpo) cpo .. 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
48475
diff
changeset

25 
instance prod :: (cpo, cpo) cpo .. 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
48475
diff
changeset

26 
instance sum :: (cpo, cpo) cpo .. 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
48475
diff
changeset

27 
instance tr :: cpo .. 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
48475
diff
changeset

28 
instance void :: cpo .. 
0  29 

30 
consts 

1474  31 
UU :: "'a" 
17248  32 
TT :: "tr" 
33 
FF :: "tr" 

1474  34 
FIX :: "('a => 'a) => 'a" 
35 
FST :: "'a*'b => 'a" 

36 
SND :: "'a*'b => 'b" 

0  37 
INL :: "'a => 'a+'b" 
38 
INR :: "'b => 'a+'b" 

39 
WHEN :: "['a=>'c, 'b=>'c, 'a+'b] => 'c" 

1474  40 
adm :: "('a => o) => o" 
41 
VOID :: "void" ("'(')") 

42 
PAIR :: "['a,'b] => 'a*'b" ("(1<_,/_>)" [0,0] 100) 

43 
COND :: "[tr,'a,'a] => 'a" ("(_ =>/ (_ / _))" [60,60,60] 60) 

22810  44 
less :: "['a,'a] => o" (infixl "<<" 50) 
17248  45 

47025  46 
axiomatization where 
0  47 
(** DOMAIN THEORY **) 
48 

47025  49 
eq_def: "x=y == x << y & y << x" and 
0  50 

47025  51 
less_trans: "[ x << y; y << z ] ==> x << z" and 
0  52 

47025  53 
less_ext: "(ALL x. f(x) << g(x)) ==> f << g" and 
0  54 

47025  55 
mono: "[ f << g; x << y ] ==> f(x) << g(y)" and 
56 

57 
minimal: "UU << x" and 

0  58 

47025  59 
FIX_eq: "\<And>f. f(FIX(f)) = FIX(f)" 
0  60 

47025  61 
axiomatization where 
0  62 
(** TR **) 
63 

47025  64 
tr_cases: "p=UU  p=TT  p=FF" and 
0  65 

47025  66 
not_TT_less_FF: "~ TT << FF" and 
67 
not_FF_less_TT: "~ FF << TT" and 

68 
not_TT_less_UU: "~ TT << UU" and 

69 
not_FF_less_UU: "~ FF << UU" and 

0  70 

47025  71 
COND_UU: "UU => x  y = UU" and 
72 
COND_TT: "TT => x  y = x" and 

17248  73 
COND_FF: "FF => x  y = y" 
0  74 

47025  75 
axiomatization where 
0  76 
(** PAIRS **) 
77 

47025  78 
surj_pairing: "<FST(z),SND(z)> = z" and 
0  79 

47025  80 
FST: "FST(<x,y>) = x" and 
17248  81 
SND: "SND(<x,y>) = y" 
0  82 

47025  83 
axiomatization where 
0  84 
(*** STRICT SUM ***) 
85 

47025  86 
INL_DEF: "~x=UU ==> ~INL(x)=UU" and 
87 
INR_DEF: "~x=UU ==> ~INR(x)=UU" and 

0  88 

47025  89 
INL_STRICT: "INL(UU) = UU" and 
90 
INR_STRICT: "INR(UU) = UU" and 

0  91 

47025  92 
WHEN_UU: "WHEN(f,g,UU) = UU" and 
93 
WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)" and 

94 
WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)" and 

0  95 

17248  96 
SUM_EXHAUSTION: 
0  97 
"z = UU  (EX x. ~x=UU & z = INL(x))  (EX y. ~y=UU & z = INR(y))" 
98 

47025  99 
axiomatization where 
0  100 
(** VOID **) 
101 

17248  102 
void_cases: "(x::void) = UU" 
0  103 

104 
(** INDUCTION **) 

105 

47025  106 
axiomatization where 
17248  107 
induct: "[ adm(P); P(UU); ALL x. P(x) > P(f(x)) ] ==> P(FIX(f))" 
0  108 

47025  109 
axiomatization where 
0  110 
(** Admissibility / Chain Completeness **) 
111 
(* All rules can be found on pages 199200 of Larry's LCF book. 

112 
Note that "easiness" of types is not taken into account 

113 
because it cannot be expressed schematically; flatness could be. *) 

114 

47025  115 
adm_less: "\<And>t u. adm(%x. t(x) << u(x))" and 
116 
adm_not_less: "\<And>t u. adm(%x.~ t(x) << u)" and 

117 
adm_not_free: "\<And>A. adm(%x. A)" and 

118 
adm_subst: "\<And>P t. adm(P) ==> adm(%x. P(t(x)))" and 

119 
adm_conj: "\<And>P Q. [ adm(P); adm(Q) ] ==> adm(%x. P(x)&Q(x))" and 

120 
adm_disj: "\<And>P Q. [ adm(P); adm(Q) ] ==> adm(%x. P(x)Q(x))" and 

121 
adm_imp: "\<And>P Q. [ adm(%x.~P(x)); adm(Q) ] ==> adm(%x. P(x)>Q(x))" and 

122 
adm_all: "\<And>P. (!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))" 

17248  123 

19757  124 

125 
lemma eq_imp_less1: "x = y ==> x << y" 

126 
by (simp add: eq_def) 

127 

128 
lemma eq_imp_less2: "x = y ==> y << x" 

129 
by (simp add: eq_def) 

130 

131 
lemma less_refl [simp]: "x << x" 

132 
apply (rule eq_imp_less1) 

133 
apply (rule refl) 

134 
done 

135 

136 
lemma less_anti_sym: "[ x << y; y << x ] ==> x=y" 

137 
by (simp add: eq_def) 

138 

139 
lemma ext: "(!!x::'a::cpo. f(x)=(g(x)::'b::cpo)) ==> (%x. f(x))=(%x. g(x))" 

140 
apply (rule less_anti_sym) 

141 
apply (rule less_ext) 

142 
apply simp 

143 
apply simp 

144 
done 

145 

146 
lemma cong: "[ f=g; x=y ] ==> f(x)=g(y)" 

147 
by simp 

148 

149 
lemma less_ap_term: "x << y ==> f(x) << f(y)" 

150 
by (rule less_refl [THEN mono]) 

151 

152 
lemma less_ap_thm: "f << g ==> f(x) << g(x)" 

153 
by (rule less_refl [THEN [2] mono]) 

154 

155 
lemma ap_term: "(x::'a::cpo) = y ==> (f(x)::'b::cpo) = f(y)" 

156 
apply (rule cong [OF refl]) 

157 
apply simp 

158 
done 

159 

160 
lemma ap_thm: "f = g ==> f(x) = g(x)" 

161 
apply (erule cong) 

162 
apply (rule refl) 

163 
done 

164 

165 

166 
lemma UU_abs: "(%x::'a::cpo. UU) = UU" 

167 
apply (rule less_anti_sym) 

168 
prefer 2 

169 
apply (rule minimal) 

170 
apply (rule less_ext) 

171 
apply (rule allI) 

172 
apply (rule minimal) 

173 
done 

174 

175 
lemma UU_app: "UU(x) = UU" 

176 
by (rule UU_abs [symmetric, THEN ap_thm]) 

177 

178 
lemma less_UU: "x << UU ==> x=UU" 

179 
apply (rule less_anti_sym) 

180 
apply assumption 

181 
apply (rule minimal) 

182 
done 

17248  183 

19757  184 
lemma tr_induct: "[ P(UU); P(TT); P(FF) ] ==> ALL b. P(b)" 
185 
apply (rule allI) 

186 
apply (rule mp) 

187 
apply (rule_tac [2] p = b in tr_cases) 

188 
apply blast 

189 
done 

190 

191 
lemma Contrapos: "~ B ==> (A ==> B) ==> ~A" 

192 
by blast 

193 

194 
lemma not_less_imp_not_eq1: "~ x << y \<Longrightarrow> x \<noteq> y" 

195 
apply (erule Contrapos) 

196 
apply simp 

197 
done 

198 

199 
lemma not_less_imp_not_eq2: "~ y << x \<Longrightarrow> x \<noteq> y" 

200 
apply (erule Contrapos) 

201 
apply simp 

202 
done 

203 

204 
lemma not_UU_eq_TT: "UU \<noteq> TT" 

205 
by (rule not_less_imp_not_eq2) (rule not_TT_less_UU) 

206 
lemma not_UU_eq_FF: "UU \<noteq> FF" 

207 
by (rule not_less_imp_not_eq2) (rule not_FF_less_UU) 

208 
lemma not_TT_eq_UU: "TT \<noteq> UU" 

209 
by (rule not_less_imp_not_eq1) (rule not_TT_less_UU) 

210 
lemma not_TT_eq_FF: "TT \<noteq> FF" 

211 
by (rule not_less_imp_not_eq1) (rule not_TT_less_FF) 

212 
lemma not_FF_eq_UU: "FF \<noteq> UU" 

213 
by (rule not_less_imp_not_eq1) (rule not_FF_less_UU) 

214 
lemma not_FF_eq_TT: "FF \<noteq> TT" 

215 
by (rule not_less_imp_not_eq1) (rule not_FF_less_TT) 

216 

217 

218 
lemma COND_cases_iff [rule_format]: 

219 
"ALL b. P(b=>xy) <> (b=UU>P(UU)) & (b=TT>P(x)) & (b=FF>P(y))" 

220 
apply (insert not_UU_eq_TT not_UU_eq_FF not_TT_eq_UU 

221 
not_TT_eq_FF not_FF_eq_UU not_FF_eq_TT) 

222 
apply (rule tr_induct) 

223 
apply (simplesubst COND_UU) 

224 
apply blast 

225 
apply (simplesubst COND_TT) 

226 
apply blast 

227 
apply (simplesubst COND_FF) 

228 
apply blast 

229 
done 

230 

231 
lemma COND_cases: 

232 
"[ x = UU > P(UU); x = TT > P(xa); x = FF > P(y) ] ==> P(x => xa  y)" 

233 
apply (rule COND_cases_iff [THEN iffD2]) 

234 
apply blast 

235 
done 

236 

237 
lemmas [simp] = 

238 
minimal 

239 
UU_app 

240 
UU_app [THEN ap_thm] 

241 
UU_app [THEN ap_thm, THEN ap_thm] 

242 
not_TT_less_FF not_FF_less_TT not_TT_less_UU not_FF_less_UU not_UU_eq_TT 

243 
not_UU_eq_FF not_TT_eq_UU not_TT_eq_FF not_FF_eq_UU not_FF_eq_TT 

244 
COND_UU COND_TT COND_FF 

245 
surj_pairing FST SND 

17248  246 

247 

248 
subsection {* Ordered pairs and products *} 

249 

19757  250 
lemma expand_all_PROD: "(ALL p. P(p)) <> (ALL x y. P(<x,y>))" 
251 
apply (rule iffI) 

252 
apply blast 

253 
apply (rule allI) 

254 
apply (rule surj_pairing [THEN subst]) 

255 
apply blast 

256 
done 

257 

258 
lemma PROD_less: "(p::'a*'b) << q <> FST(p) << FST(q) & SND(p) << SND(q)" 

259 
apply (rule iffI) 

260 
apply (rule conjI) 

261 
apply (erule less_ap_term) 

262 
apply (erule less_ap_term) 

263 
apply (erule conjE) 

264 
apply (rule surj_pairing [of p, THEN subst]) 

265 
apply (rule surj_pairing [of q, THEN subst]) 

266 
apply (rule mono, erule less_ap_term, assumption) 

267 
done 

268 

269 
lemma PROD_eq: "p=q <> FST(p)=FST(q) & SND(p)=SND(q)" 

270 
apply (rule iffI) 

271 
apply simp 

272 
apply (unfold eq_def) 

273 
apply (simp add: PROD_less) 

274 
done 

275 

276 
lemma PAIR_less [simp]: "<a,b> << <c,d> <> a<<c & b<<d" 

277 
by (simp add: PROD_less) 

278 

279 
lemma PAIR_eq [simp]: "<a,b> = <c,d> <> a=c & b=d" 

280 
by (simp add: PROD_eq) 

281 

282 
lemma UU_is_UU_UU [simp]: "<UU,UU> = UU" 

283 
by (rule less_UU) (simp add: PROD_less) 

284 

285 
lemma FST_STRICT [simp]: "FST(UU) = UU" 

286 
apply (rule subst [OF UU_is_UU_UU]) 

287 
apply (simp del: UU_is_UU_UU) 

288 
done 

289 

290 
lemma SND_STRICT [simp]: "SND(UU) = UU" 

291 
apply (rule subst [OF UU_is_UU_UU]) 

292 
apply (simp del: UU_is_UU_UU) 

293 
done 

17248  294 

295 

296 
subsection {* Fixedpoint theory *} 

297 

19757  298 
lemma adm_eq: "adm(%x. t(x)=(u(x)::'a::cpo))" 
299 
apply (unfold eq_def) 

300 
apply (rule adm_conj adm_less)+ 

301 
done 

302 

303 
lemma adm_not_not: "adm(P) ==> adm(%x.~~P(x))" 

304 
by simp 

305 

306 
lemma not_eq_TT: "ALL p. ~p=TT <> (p=FF  p=UU)" 

307 
and not_eq_FF: "ALL p. ~p=FF <> (p=TT  p=UU)" 

308 
and not_eq_UU: "ALL p. ~p=UU <> (p=TT  p=FF)" 

309 
by (rule tr_induct, simp_all)+ 

310 

311 
lemma adm_not_eq_tr: "ALL p::tr. adm(%x. ~t(x)=p)" 

312 
apply (rule tr_induct) 

313 
apply (simp_all add: not_eq_TT not_eq_FF not_eq_UU) 

314 
apply (rule adm_disj adm_eq)+ 

315 
done 

316 

317 
lemmas adm_lemmas = 

318 
adm_not_free adm_eq adm_less adm_not_less 

319 
adm_not_eq_tr adm_conj adm_disj adm_imp adm_all 

320 

321 

322 
ML {* 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
22810
diff
changeset

323 
fun induct_tac ctxt v i = 
27239  324 
res_inst_tac ctxt [(("f", 0), v)] @{thm induct} i THEN 
22810  325 
REPEAT (resolve_tac @{thms adm_lemmas} i) 
19757  326 
*} 
327 

328 
lemma least_FIX: "f(p) = p ==> FIX(f) << p" 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
22810
diff
changeset

329 
apply (tactic {* induct_tac @{context} "f" 1 *}) 
19757  330 
apply (rule minimal) 
331 
apply (intro strip) 

332 
apply (erule subst) 

333 
apply (erule less_ap_term) 

334 
done 

335 

336 
lemma lfp_is_FIX: 

337 
assumes 1: "f(p) = p" 

338 
and 2: "ALL q. f(q)=q > p << q" 

339 
shows "p = FIX(f)" 

340 
apply (rule less_anti_sym) 

341 
apply (rule 2 [THEN spec, THEN mp]) 

342 
apply (rule FIX_eq) 

343 
apply (rule least_FIX) 

344 
apply (rule 1) 

345 
done 

346 

347 

348 
lemma FIX_pair: "<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)" 

349 
apply (rule lfp_is_FIX) 

350 
apply (simp add: FIX_eq [of f] FIX_eq [of g]) 

351 
apply (intro strip) 

352 
apply (simp add: PROD_less) 

353 
apply (rule conjI) 

354 
apply (rule least_FIX) 

355 
apply (erule subst, rule FST [symmetric]) 

356 
apply (rule least_FIX) 

357 
apply (erule subst, rule SND [symmetric]) 

358 
done 

359 

360 
lemma FIX1: "FIX(f) = FST(FIX(%p. <f(FST(p)),g(SND(p))>))" 

361 
by (rule FIX_pair [unfolded PROD_eq FST SND, THEN conjunct1]) 

362 

363 
lemma FIX2: "FIX(g) = SND(FIX(%p. <f(FST(p)),g(SND(p))>))" 

364 
by (rule FIX_pair [unfolded PROD_eq FST SND, THEN conjunct2]) 

365 

366 
lemma induct2: 

367 
assumes 1: "adm(%p. P(FST(p),SND(p)))" 

368 
and 2: "P(UU::'a,UU::'b)" 

369 
and 3: "ALL x y. P(x,y) > P(f(x),g(y))" 

370 
shows "P(FIX(f),FIX(g))" 

371 
apply (rule FIX1 [THEN ssubst, of _ f g]) 

372 
apply (rule FIX2 [THEN ssubst, of _ f g]) 

19758  373 
apply (rule induct [where ?f = "%x. <f(FST(x)),g(SND(x))>"]) 
374 
apply (rule 1) 

19757  375 
apply simp 
376 
apply (rule 2) 

377 
apply (simp add: expand_all_PROD) 

378 
apply (rule 3) 

379 
done 

380 

381 
ML {* 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
22810
diff
changeset

382 
fun induct2_tac ctxt (f, g) i = 
27239  383 
res_inst_tac ctxt [(("f", 0), f), (("g", 0), g)] @{thm induct2} i THEN 
22810  384 
REPEAT(resolve_tac @{thms adm_lemmas} i) 
19757  385 
*} 
386 

387 
end 