author | berghofe |
Fri, 09 Jun 2006 17:32:38 +0200 | |
changeset 19834 | 2290cc06049b |
parent 19772 | 45897b49fdd2 |
child 19856 | 7408a891424e |
permissions | -rw-r--r-- |
17870 | 1 |
(* $Id$ *) |
2 |
||
19494 | 3 |
theory Nominal |
17870 | 4 |
imports Main |
18068 | 5 |
uses |
6 |
("nominal_atoms.ML") |
|
7 |
("nominal_package.ML") |
|
18264 | 8 |
("nominal_induct.ML") |
18068 | 9 |
("nominal_permeq.ML") |
17870 | 10 |
begin |
11 |
||
12 |
section {* Permutations *} |
|
13 |
(*======================*) |
|
14 |
||
15 |
types |
|
16 |
'x prm = "('x \<times> 'x) list" |
|
17 |
||
19477 | 18 |
(* polymorphic operations for permutation and swapping *) |
17870 | 19 |
consts |
18491 | 20 |
perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<bullet>" 80) |
17870 | 21 |
swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x" |
22 |
||
19477 | 23 |
(* for the decision procedure involving permutations *) |
24 |
(* (to make the perm-composition to be terminating *) |
|
25 |
constdefs |
|
26 |
"perm_aux pi x \<equiv> pi\<bullet>x" |
|
27 |
||
17870 | 28 |
(* permutation on sets *) |
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
29 |
defs (unchecked overloaded) |
17870 | 30 |
perm_set_def: "pi\<bullet>(X::'a set) \<equiv> {pi\<bullet>a | a. a\<in>X}" |
31 |
||
18656 | 32 |
lemma perm_empty: |
33 |
shows "pi\<bullet>{} = {}" |
|
34 |
by (simp add: perm_set_def) |
|
35 |
||
18264 | 36 |
lemma perm_union: |
37 |
shows "pi \<bullet> (X \<union> Y) = (pi \<bullet> X) \<union> (pi \<bullet> Y)" |
|
38 |
by (auto simp add: perm_set_def) |
|
39 |
||
18656 | 40 |
lemma perm_insert: |
41 |
shows "pi\<bullet>(insert x X) = insert (pi\<bullet>x) (pi\<bullet>X)" |
|
42 |
by (auto simp add: perm_set_def) |
|
43 |
||
17870 | 44 |
(* permutation on units and products *) |
19687 | 45 |
primrec (unchecked perm_unit) |
46 |
"pi\<bullet>() = ()" |
|
47 |
||
48 |
primrec (unchecked perm_prod) |
|
49 |
"pi\<bullet>(a,b) = (pi\<bullet>a,pi\<bullet>b)" |
|
17870 | 50 |
|
51 |
lemma perm_fst: |
|
52 |
"pi\<bullet>(fst x) = fst (pi\<bullet>x)" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
53 |
by (cases x) simp |
17870 | 54 |
|
55 |
lemma perm_snd: |
|
56 |
"pi\<bullet>(snd x) = snd (pi\<bullet>x)" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
57 |
by (cases x) simp |
17870 | 58 |
|
59 |
(* permutation on lists *) |
|
19687 | 60 |
primrec (unchecked perm_list) |
61 |
perm_nil_def: "pi\<bullet>[] = []" |
|
62 |
perm_cons_def: "pi\<bullet>(x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)" |
|
17870 | 63 |
|
64 |
lemma perm_append: |
|
65 |
fixes pi :: "'x prm" |
|
66 |
and l1 :: "'a list" |
|
67 |
and l2 :: "'a list" |
|
68 |
shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
69 |
by (induct l1) auto |
17870 | 70 |
|
71 |
lemma perm_rev: |
|
72 |
fixes pi :: "'x prm" |
|
73 |
and l :: "'a list" |
|
74 |
shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
75 |
by (induct l) (simp_all add: perm_append) |
17870 | 76 |
|
77 |
(* permutation on functions *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
78 |
defs (unchecked overloaded) |
17870 | 79 |
perm_fun_def: "pi\<bullet>(f::'a\<Rightarrow>'b) \<equiv> (\<lambda>x. pi\<bullet>f((rev pi)\<bullet>x))" |
80 |
||
81 |
(* permutation on bools *) |
|
19687 | 82 |
primrec (unchecked perm_bool) |
17870 | 83 |
perm_true_def: "pi\<bullet>True = True" |
84 |
perm_false_def: "pi\<bullet>False = False" |
|
85 |
||
18264 | 86 |
lemma perm_bool: |
87 |
shows "pi\<bullet>(b::bool) = b" |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
88 |
by (cases b) auto |
18264 | 89 |
|
17870 | 90 |
(* permutation on options *) |
19687 | 91 |
primrec (unchecked perm_option) |
92 |
perm_some_def: "pi\<bullet>Some(x) = Some(pi\<bullet>x)" |
|
93 |
perm_none_def: "pi\<bullet>None = None" |
|
17870 | 94 |
|
95 |
(* a "private" copy of the option type used in the abstraction function *) |
|
18579
002d371401f5
changed the name of the type "nOption" to "noption".
urbanc
parents:
18578
diff
changeset
|
96 |
datatype 'a noption = nSome 'a | nNone |
17870 | 97 |
|
19687 | 98 |
primrec (unchecked perm_noption) |
99 |
perm_nSome_def: "pi\<bullet>nSome(x) = nSome(pi\<bullet>x)" |
|
100 |
perm_nNone_def: "pi\<bullet>nNone = nNone" |
|
18600 | 101 |
|
102 |
(* a "private" copy of the product type used in the nominal induct method *) |
|
103 |
datatype ('a,'b) nprod = nPair 'a 'b |
|
104 |
||
19687 | 105 |
primrec (unchecked perm_nprod) |
106 |
perm_nProd_def: "pi\<bullet>(nPair x1 x2) = nPair (pi\<bullet>x1) (pi\<bullet>x2)" |
|
17870 | 107 |
|
108 |
(* permutation on characters (used in strings) *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
109 |
defs (unchecked overloaded) |
17870 | 110 |
perm_char_def: "pi\<bullet>(s::char) \<equiv> s" |
111 |
||
112 |
(* permutation on ints *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
113 |
defs (unchecked overloaded) |
17870 | 114 |
perm_int_def: "pi\<bullet>(i::int) \<equiv> i" |
115 |
||
116 |
(* permutation on nats *) |
|
19634
c78cf8981c5d
defs (unchecked overloaded), including former primrec;
wenzelm
parents:
19566
diff
changeset
|
117 |
defs (unchecked overloaded) |
17870 | 118 |
perm_nat_def: "pi\<bullet>(i::nat) \<equiv> i" |
119 |
||
120 |
section {* permutation equality *} |
|
121 |
(*==============================*) |
|
122 |
||
123 |
constdefs |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
124 |
prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool" (" _ \<triangleq> _ " [80,80] 80) |
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
125 |
"pi1 \<triangleq> pi2 \<equiv> \<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a" |
17870 | 126 |
|
127 |
section {* Support, Freshness and Supports*} |
|
128 |
(*========================================*) |
|
129 |
constdefs |
|
130 |
supp :: "'a \<Rightarrow> ('x set)" |
|
131 |
"supp x \<equiv> {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}" |
|
132 |
||
17871 | 133 |
fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [80,80] 80) |
17870 | 134 |
"a \<sharp> x \<equiv> a \<notin> supp x" |
135 |
||
136 |
supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl 80) |
|
137 |
"S supports x \<equiv> \<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x)" |
|
138 |
||
139 |
lemma supp_fresh_iff: |
|
140 |
fixes x :: "'a" |
|
141 |
shows "(supp x) = {a::'x. \<not>a\<sharp>x}" |
|
142 |
apply(simp add: fresh_def) |
|
143 |
done |
|
144 |
||
145 |
lemma supp_unit: |
|
146 |
shows "supp () = {}" |
|
147 |
by (simp add: supp_def) |
|
148 |
||
18264 | 149 |
lemma supp_set_empty: |
150 |
shows "supp {} = {}" |
|
151 |
by (force simp add: supp_def perm_set_def) |
|
152 |
||
153 |
lemma supp_singleton: |
|
154 |
shows "supp {x} = supp x" |
|
155 |
by (force simp add: supp_def perm_set_def) |
|
156 |
||
17870 | 157 |
lemma supp_prod: |
158 |
fixes x :: "'a" |
|
159 |
and y :: "'b" |
|
160 |
shows "(supp (x,y)) = (supp x)\<union>(supp y)" |
|
161 |
by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
162 |
||
18600 | 163 |
lemma supp_nprod: |
164 |
fixes x :: "'a" |
|
165 |
and y :: "'b" |
|
166 |
shows "(supp (nPair x y)) = (supp x)\<union>(supp y)" |
|
167 |
by (force simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
168 |
||
17870 | 169 |
lemma supp_list_nil: |
170 |
shows "supp [] = {}" |
|
171 |
apply(simp add: supp_def) |
|
172 |
done |
|
173 |
||
174 |
lemma supp_list_cons: |
|
175 |
fixes x :: "'a" |
|
176 |
and xs :: "'a list" |
|
177 |
shows "supp (x#xs) = (supp x)\<union>(supp xs)" |
|
178 |
apply(auto simp add: supp_def Collect_imp_eq Collect_neg_eq) |
|
179 |
done |
|
180 |
||
181 |
lemma supp_list_append: |
|
182 |
fixes xs :: "'a list" |
|
183 |
and ys :: "'a list" |
|
184 |
shows "supp (xs@ys) = (supp xs)\<union>(supp ys)" |
|
185 |
by (induct xs, auto simp add: supp_list_nil supp_list_cons) |
|
186 |
||
187 |
lemma supp_list_rev: |
|
188 |
fixes xs :: "'a list" |
|
189 |
shows "supp (rev xs) = (supp xs)" |
|
190 |
by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil) |
|
191 |
||
192 |
lemma supp_bool: |
|
193 |
fixes x :: "bool" |
|
194 |
shows "supp (x) = {}" |
|
195 |
apply(case_tac "x") |
|
196 |
apply(simp_all add: supp_def) |
|
197 |
done |
|
198 |
||
199 |
lemma supp_some: |
|
200 |
fixes x :: "'a" |
|
201 |
shows "supp (Some x) = (supp x)" |
|
202 |
apply(simp add: supp_def) |
|
203 |
done |
|
204 |
||
205 |
lemma supp_none: |
|
206 |
fixes x :: "'a" |
|
207 |
shows "supp (None) = {}" |
|
208 |
apply(simp add: supp_def) |
|
209 |
done |
|
210 |
||
211 |
lemma supp_int: |
|
212 |
fixes i::"int" |
|
213 |
shows "supp (i) = {}" |
|
214 |
apply(simp add: supp_def perm_int_def) |
|
215 |
done |
|
216 |
||
18627 | 217 |
lemma supp_char: |
218 |
fixes c::"char" |
|
219 |
shows "supp (c) = {}" |
|
220 |
apply(simp add: supp_def perm_char_def) |
|
221 |
done |
|
222 |
||
223 |
lemma supp_string: |
|
224 |
fixes s::"string" |
|
225 |
shows "supp (s) = {}" |
|
226 |
apply(induct s) |
|
227 |
apply(auto simp add: supp_char supp_list_nil supp_list_cons) |
|
228 |
done |
|
229 |
||
18264 | 230 |
lemma fresh_set_empty: |
231 |
shows "a\<sharp>{}" |
|
232 |
by (simp add: fresh_def supp_set_empty) |
|
233 |
||
18578 | 234 |
lemma fresh_singleton: |
235 |
shows "a\<sharp>{x} = a\<sharp>x" |
|
236 |
by (simp add: fresh_def supp_singleton) |
|
237 |
||
17870 | 238 |
lemma fresh_prod: |
239 |
fixes a :: "'x" |
|
240 |
and x :: "'a" |
|
241 |
and y :: "'b" |
|
242 |
shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)" |
|
243 |
by (simp add: fresh_def supp_prod) |
|
244 |
||
245 |
lemma fresh_list_nil: |
|
246 |
fixes a :: "'x" |
|
18264 | 247 |
shows "a\<sharp>[]" |
17870 | 248 |
by (simp add: fresh_def supp_list_nil) |
249 |
||
250 |
lemma fresh_list_cons: |
|
251 |
fixes a :: "'x" |
|
252 |
and x :: "'a" |
|
253 |
and xs :: "'a list" |
|
254 |
shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)" |
|
255 |
by (simp add: fresh_def supp_list_cons) |
|
256 |
||
257 |
lemma fresh_list_append: |
|
258 |
fixes a :: "'x" |
|
259 |
and xs :: "'a list" |
|
260 |
and ys :: "'a list" |
|
261 |
shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)" |
|
262 |
by (simp add: fresh_def supp_list_append) |
|
263 |
||
264 |
lemma fresh_list_rev: |
|
265 |
fixes a :: "'x" |
|
266 |
and xs :: "'a list" |
|
267 |
shows "a\<sharp>(rev xs) = a\<sharp>xs" |
|
268 |
by (simp add: fresh_def supp_list_rev) |
|
269 |
||
270 |
lemma fresh_none: |
|
271 |
fixes a :: "'x" |
|
272 |
shows "a\<sharp>None" |
|
273 |
apply(simp add: fresh_def supp_none) |
|
274 |
done |
|
275 |
||
276 |
lemma fresh_some: |
|
277 |
fixes a :: "'x" |
|
278 |
and x :: "'a" |
|
279 |
shows "a\<sharp>(Some x) = a\<sharp>x" |
|
280 |
apply(simp add: fresh_def supp_some) |
|
281 |
done |
|
282 |
||
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
283 |
text {* Normalization of freshness results; cf.\ @{text nominal_induct} *} |
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
284 |
|
18656 | 285 |
lemma fresh_unit_elim: "(a\<sharp>() \<Longrightarrow> PROP C) \<equiv> PROP C" |
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
286 |
by (simp add: fresh_def supp_unit) |
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
287 |
|
18656 | 288 |
lemma fresh_prod_elim: "(a\<sharp>(x,y) \<Longrightarrow> PROP C) \<equiv> (a\<sharp>x \<Longrightarrow> a\<sharp>y \<Longrightarrow> PROP C)" |
18294
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
289 |
by rule (simp_all add: fresh_prod) |
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
290 |
|
bbfd64cc91ab
fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents:
18268
diff
changeset
|
291 |
|
17870 | 292 |
section {* Abstract Properties for Permutations and Atoms *} |
293 |
(*=========================================================*) |
|
294 |
||
295 |
(* properties for being a permutation type *) |
|
296 |
constdefs |
|
297 |
"pt TYPE('a) TYPE('x) \<equiv> |
|
298 |
(\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> |
|
299 |
(\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
300 |
(\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<triangleq> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)" |
17870 | 301 |
|
302 |
(* properties for being an atom type *) |
|
303 |
constdefs |
|
304 |
"at TYPE('x) \<equiv> |
|
305 |
(\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and> |
|
306 |
(\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> |
|
307 |
(\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> |
|
308 |
(infinite (UNIV::'x set))" |
|
309 |
||
310 |
(* property of two atom-types being disjoint *) |
|
311 |
constdefs |
|
312 |
"disjoint TYPE('x) TYPE('y) \<equiv> |
|
313 |
(\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> |
|
314 |
(\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)" |
|
315 |
||
316 |
(* composition property of two permutation on a type 'a *) |
|
317 |
constdefs |
|
318 |
"cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> |
|
319 |
(\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" |
|
320 |
||
321 |
(* property of having finite support *) |
|
322 |
constdefs |
|
323 |
"fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)" |
|
324 |
||
325 |
section {* Lemmas about the atom-type properties*} |
|
326 |
(*==============================================*) |
|
327 |
||
328 |
lemma at1: |
|
329 |
fixes x::"'x" |
|
330 |
assumes a: "at TYPE('x)" |
|
331 |
shows "([]::'x prm)\<bullet>x = x" |
|
332 |
using a by (simp add: at_def) |
|
333 |
||
334 |
lemma at2: |
|
335 |
fixes a ::"'x" |
|
336 |
and b ::"'x" |
|
337 |
and x ::"'x" |
|
338 |
and pi::"'x prm" |
|
339 |
assumes a: "at TYPE('x)" |
|
340 |
shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)" |
|
341 |
using a by (simp only: at_def) |
|
342 |
||
343 |
lemma at3: |
|
344 |
fixes a ::"'x" |
|
345 |
and b ::"'x" |
|
346 |
and c ::"'x" |
|
347 |
assumes a: "at TYPE('x)" |
|
348 |
shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))" |
|
349 |
using a by (simp only: at_def) |
|
350 |
||
351 |
(* rules to calculate simple premutations *) |
|
352 |
lemmas at_calc = at2 at1 at3 |
|
353 |
||
354 |
lemma at4: |
|
355 |
assumes a: "at TYPE('x)" |
|
356 |
shows "infinite (UNIV::'x set)" |
|
357 |
using a by (simp add: at_def) |
|
358 |
||
359 |
lemma at_append: |
|
360 |
fixes pi1 :: "'x prm" |
|
361 |
and pi2 :: "'x prm" |
|
362 |
and c :: "'x" |
|
363 |
assumes at: "at TYPE('x)" |
|
364 |
shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)" |
|
365 |
proof (induct pi1) |
|
366 |
case Nil show ?case by (simp add: at1[OF at]) |
|
367 |
next |
|
368 |
case (Cons x xs) |
|
18053
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
369 |
have "(xs@pi2)\<bullet>c = xs\<bullet>(pi2\<bullet>c)" by fact |
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
370 |
also have "(x#xs)@pi2 = x#(xs@pi2)" by simp |
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
371 |
ultimately show ?case by (cases "x", simp add: at2[OF at]) |
17870 | 372 |
qed |
373 |
||
374 |
lemma at_swap: |
|
375 |
fixes a :: "'x" |
|
376 |
and b :: "'x" |
|
377 |
and c :: "'x" |
|
378 |
assumes at: "at TYPE('x)" |
|
379 |
shows "swap (a,b) (swap (a,b) c) = c" |
|
380 |
by (auto simp add: at3[OF at]) |
|
381 |
||
382 |
lemma at_rev_pi: |
|
383 |
fixes pi :: "'x prm" |
|
384 |
and c :: "'x" |
|
385 |
assumes at: "at TYPE('x)" |
|
386 |
shows "(rev pi)\<bullet>(pi\<bullet>c) = c" |
|
387 |
proof(induct pi) |
|
388 |
case Nil show ?case by (simp add: at1[OF at]) |
|
389 |
next |
|
390 |
case (Cons x xs) thus ?case |
|
391 |
by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at]) |
|
392 |
qed |
|
393 |
||
394 |
lemma at_pi_rev: |
|
395 |
fixes pi :: "'x prm" |
|
396 |
and x :: "'x" |
|
397 |
assumes at: "at TYPE('x)" |
|
398 |
shows "pi\<bullet>((rev pi)\<bullet>x) = x" |
|
399 |
by (rule at_rev_pi[OF at, of "rev pi" _,simplified]) |
|
400 |
||
401 |
lemma at_bij1: |
|
402 |
fixes pi :: "'x prm" |
|
403 |
and x :: "'x" |
|
404 |
and y :: "'x" |
|
405 |
assumes at: "at TYPE('x)" |
|
406 |
and a: "(pi\<bullet>x) = y" |
|
407 |
shows "x=(rev pi)\<bullet>y" |
|
408 |
proof - |
|
409 |
from a have "y=(pi\<bullet>x)" by (rule sym) |
|
410 |
thus ?thesis by (simp only: at_rev_pi[OF at]) |
|
411 |
qed |
|
412 |
||
413 |
lemma at_bij2: |
|
414 |
fixes pi :: "'x prm" |
|
415 |
and x :: "'x" |
|
416 |
and y :: "'x" |
|
417 |
assumes at: "at TYPE('x)" |
|
418 |
and a: "((rev pi)\<bullet>x) = y" |
|
419 |
shows "x=pi\<bullet>y" |
|
420 |
proof - |
|
421 |
from a have "y=((rev pi)\<bullet>x)" by (rule sym) |
|
422 |
thus ?thesis by (simp only: at_pi_rev[OF at]) |
|
423 |
qed |
|
424 |
||
425 |
lemma at_bij: |
|
426 |
fixes pi :: "'x prm" |
|
427 |
and x :: "'x" |
|
428 |
and y :: "'x" |
|
429 |
assumes at: "at TYPE('x)" |
|
430 |
shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" |
|
431 |
proof |
|
432 |
assume "pi\<bullet>x = pi\<bullet>y" |
|
433 |
hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at]) |
|
434 |
thus "x=y" by (simp only: at_rev_pi[OF at]) |
|
435 |
next |
|
436 |
assume "x=y" |
|
437 |
thus "pi\<bullet>x = pi\<bullet>y" by simp |
|
438 |
qed |
|
439 |
||
440 |
lemma at_supp: |
|
441 |
fixes x :: "'x" |
|
442 |
assumes at: "at TYPE('x)" |
|
443 |
shows "supp x = {x}" |
|
444 |
proof (simp add: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at], auto) |
|
445 |
assume f: "finite {b::'x. b \<noteq> x}" |
|
446 |
have a1: "{b::'x. b \<noteq> x} = UNIV-{x}" by force |
|
447 |
have a2: "infinite (UNIV::'x set)" by (rule at4[OF at]) |
|
448 |
from f a1 a2 show False by force |
|
449 |
qed |
|
450 |
||
451 |
lemma at_fresh: |
|
452 |
fixes a :: "'x" |
|
453 |
and b :: "'x" |
|
454 |
assumes at: "at TYPE('x)" |
|
455 |
shows "(a\<sharp>b) = (a\<noteq>b)" |
|
456 |
by (simp add: at_supp[OF at] fresh_def) |
|
457 |
||
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
458 |
lemma at_prm_fresh: |
17870 | 459 |
fixes c :: "'x" |
460 |
and pi:: "'x prm" |
|
461 |
assumes at: "at TYPE('x)" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
462 |
and a: "c\<sharp>pi" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
463 |
shows "pi\<bullet>c = c" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
464 |
using a |
17870 | 465 |
apply(induct pi) |
466 |
apply(simp add: at1[OF at]) |
|
467 |
apply(force simp add: fresh_list_cons at2[OF at] fresh_prod at_fresh[OF at] at3[OF at]) |
|
468 |
done |
|
469 |
||
470 |
lemma at_prm_rev_eq: |
|
471 |
fixes pi1 :: "'x prm" |
|
472 |
and pi2 :: "'x prm" |
|
473 |
assumes at: "at TYPE('x)" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
474 |
shows "((rev pi1) \<triangleq> (rev pi2)) = (pi1 \<triangleq> pi2)" |
17870 | 475 |
proof (simp add: prm_eq_def, auto) |
476 |
fix x |
|
477 |
assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" |
|
478 |
hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp |
|
479 |
hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at]) |
|
480 |
hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at]) |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
481 |
thus "pi1\<bullet>x = pi2\<bullet>x" by simp |
17870 | 482 |
next |
483 |
fix x |
|
484 |
assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x" |
|
485 |
hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp |
|
486 |
hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at]) |
|
487 |
hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at]) |
|
488 |
thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp |
|
489 |
qed |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
490 |
|
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
491 |
lemma at_prm_eq_append: |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
492 |
fixes pi1 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
493 |
and pi2 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
494 |
and pi3 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
495 |
assumes at: "at TYPE('x)" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
496 |
and a: "pi1 \<triangleq> pi2" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
497 |
shows "(pi3@pi1) \<triangleq> (pi3@pi2)" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
498 |
using a by (simp add: prm_eq_def at_append[OF at] at_bij[OF at]) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
499 |
|
19325 | 500 |
lemma at_prm_eq_append': |
501 |
fixes pi1 :: "'x prm" |
|
502 |
and pi2 :: "'x prm" |
|
503 |
and pi3 :: "'x prm" |
|
504 |
assumes at: "at TYPE('x)" |
|
505 |
and a: "pi1 \<triangleq> pi2" |
|
506 |
shows "(pi1@pi3) \<triangleq> (pi2@pi3)" |
|
507 |
using a by (simp add: prm_eq_def at_append[OF at]) |
|
508 |
||
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
509 |
lemma at_prm_eq_trans: |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
510 |
fixes pi1 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
511 |
and pi2 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
512 |
and pi3 :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
513 |
assumes a1: "pi1 \<triangleq> pi2" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
514 |
and a2: "pi2 \<triangleq> pi3" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
515 |
shows "pi1 \<triangleq> pi3" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
516 |
using a1 a2 by (auto simp add: prm_eq_def) |
17870 | 517 |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
518 |
lemma at_prm_eq_refl: |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
519 |
fixes pi :: "'x prm" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
520 |
shows "pi \<triangleq> pi" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
521 |
by (simp add: prm_eq_def) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
522 |
|
17870 | 523 |
lemma at_prm_rev_eq1: |
524 |
fixes pi1 :: "'x prm" |
|
525 |
and pi2 :: "'x prm" |
|
526 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
527 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1) \<triangleq> (rev pi2)" |
17870 | 528 |
by (simp add: at_prm_rev_eq[OF at]) |
529 |
||
530 |
lemma at_ds1: |
|
531 |
fixes a :: "'x" |
|
532 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
533 |
shows "[(a,a)] \<triangleq> []" |
17870 | 534 |
by (force simp add: prm_eq_def at_calc[OF at]) |
535 |
||
536 |
lemma at_ds2: |
|
537 |
fixes pi :: "'x prm" |
|
538 |
and a :: "'x" |
|
539 |
and b :: "'x" |
|
540 |
assumes at: "at TYPE('x)" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
541 |
shows "([(a,b)]@pi) \<triangleq> (pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)])" |
17870 | 542 |
by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at] |
543 |
at_rev_pi[OF at] at_calc[OF at]) |
|
544 |
||
545 |
lemma at_ds3: |
|
546 |
fixes a :: "'x" |
|
547 |
and b :: "'x" |
|
548 |
and c :: "'x" |
|
549 |
assumes at: "at TYPE('x)" |
|
550 |
and a: "distinct [a,b,c]" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
551 |
shows "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" |
17870 | 552 |
using a by (force simp add: prm_eq_def at_calc[OF at]) |
553 |
||
554 |
lemma at_ds4: |
|
555 |
fixes a :: "'x" |
|
556 |
and b :: "'x" |
|
557 |
and pi :: "'x prm" |
|
558 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
559 |
shows "(pi@[(a,(rev pi)\<bullet>b)]) \<triangleq> ([(pi\<bullet>a,b)]@pi)" |
17870 | 560 |
by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at] |
561 |
at_pi_rev[OF at] at_rev_pi[OF at]) |
|
562 |
||
563 |
lemma at_ds5: |
|
564 |
fixes a :: "'x" |
|
565 |
and b :: "'x" |
|
566 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
567 |
shows "[(a,b)] \<triangleq> [(b,a)]" |
17870 | 568 |
by (force simp add: prm_eq_def at_calc[OF at]) |
569 |
||
19164 | 570 |
lemma at_ds5': |
571 |
fixes a :: "'x" |
|
572 |
and b :: "'x" |
|
573 |
assumes at: "at TYPE('x)" |
|
574 |
shows "[(a,b),(b,a)] \<triangleq> []" |
|
575 |
by (force simp add: prm_eq_def at_calc[OF at]) |
|
576 |
||
17870 | 577 |
lemma at_ds6: |
578 |
fixes a :: "'x" |
|
579 |
and b :: "'x" |
|
580 |
and c :: "'x" |
|
581 |
assumes at: "at TYPE('x)" |
|
582 |
and a: "distinct [a,b,c]" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
583 |
shows "[(a,c),(a,b)] \<triangleq> [(b,c),(a,c)]" |
17870 | 584 |
using a by (force simp add: prm_eq_def at_calc[OF at]) |
585 |
||
586 |
lemma at_ds7: |
|
587 |
fixes pi :: "'x prm" |
|
588 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
589 |
shows "((rev pi)@pi) \<triangleq> []" |
17870 | 590 |
by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at]) |
591 |
||
592 |
lemma at_ds8_aux: |
|
593 |
fixes pi :: "'x prm" |
|
594 |
and a :: "'x" |
|
595 |
and b :: "'x" |
|
596 |
and c :: "'x" |
|
597 |
assumes at: "at TYPE('x)" |
|
598 |
shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)" |
|
599 |
by (force simp add: at_calc[OF at] at_bij[OF at]) |
|
600 |
||
601 |
lemma at_ds8: |
|
602 |
fixes pi1 :: "'x prm" |
|
603 |
and pi2 :: "'x prm" |
|
604 |
and a :: "'x" |
|
605 |
and b :: "'x" |
|
606 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
607 |
shows "(pi1@pi2) \<triangleq> ((pi1\<bullet>pi2)@pi1)" |
17870 | 608 |
apply(induct_tac pi2) |
609 |
apply(simp add: prm_eq_def) |
|
610 |
apply(auto simp add: prm_eq_def) |
|
611 |
apply(simp add: at2[OF at]) |
|
612 |
apply(drule_tac x="aa" in spec) |
|
613 |
apply(drule sym) |
|
614 |
apply(simp) |
|
615 |
apply(simp add: at_append[OF at]) |
|
616 |
apply(simp add: at2[OF at]) |
|
617 |
apply(simp add: at_ds8_aux[OF at]) |
|
618 |
done |
|
619 |
||
620 |
lemma at_ds9: |
|
621 |
fixes pi1 :: "'x prm" |
|
622 |
and pi2 :: "'x prm" |
|
623 |
and a :: "'x" |
|
624 |
and b :: "'x" |
|
625 |
assumes at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
626 |
shows " ((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" |
17870 | 627 |
apply(induct_tac pi2) |
628 |
apply(simp add: prm_eq_def) |
|
629 |
apply(auto simp add: prm_eq_def) |
|
630 |
apply(simp add: at_append[OF at]) |
|
631 |
apply(simp add: at2[OF at] at1[OF at]) |
|
632 |
apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec) |
|
633 |
apply(drule sym) |
|
634 |
apply(simp) |
|
635 |
apply(simp add: at_ds8_aux[OF at]) |
|
636 |
apply(simp add: at_rev_pi[OF at]) |
|
637 |
done |
|
638 |
||
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
639 |
lemma at_ds10: |
19132 | 640 |
fixes pi :: "'x prm" |
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
641 |
and a :: "'x" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
642 |
and b :: "'x" |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
643 |
assumes at: "at TYPE('x)" |
19132 | 644 |
and a: "b\<sharp>(rev pi)" |
645 |
shows "([(pi\<bullet>a,b)]@pi) \<triangleq> (pi@[(a,b)])" |
|
19107
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
646 |
using a |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
647 |
apply - |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
648 |
apply(rule at_prm_eq_trans) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
649 |
apply(rule at_ds2[OF at]) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
650 |
apply(simp add: at_prm_fresh[OF at] at_rev_pi[OF at]) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
651 |
apply(rule at_prm_eq_refl) |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
652 |
done |
b16a45c53884
added a few lemmas to do with permutation-equivalence for the
urbanc
parents:
19045
diff
changeset
|
653 |
|
17870 | 654 |
--"there always exists an atom not being in a finite set" |
655 |
lemma ex_in_inf: |
|
656 |
fixes A::"'x set" |
|
657 |
assumes at: "at TYPE('x)" |
|
658 |
and fs: "finite A" |
|
659 |
shows "\<exists>c::'x. c\<notin>A" |
|
660 |
proof - |
|
661 |
from fs at4[OF at] have "infinite ((UNIV::'x set) - A)" |
|
662 |
by (simp add: Diff_infinite_finite) |
|
663 |
hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:) |
|
664 |
hence "\<exists>c::'x. c\<in>((UNIV::'x set) - A)" by force |
|
665 |
thus "\<exists>c::'x. c\<notin>A" by force |
|
666 |
qed |
|
667 |
||
668 |
--"there always exists a fresh name for an object with finite support" |
|
669 |
lemma at_exists_fresh: |
|
670 |
fixes x :: "'a" |
|
671 |
assumes at: "at TYPE('x)" |
|
672 |
and fs: "finite ((supp x)::'x set)" |
|
673 |
shows "\<exists>c::'x. c\<sharp>x" |
|
674 |
by (simp add: fresh_def, rule ex_in_inf[OF at, OF fs]) |
|
675 |
||
18657 | 676 |
lemma at_finite_select: "at (TYPE('a)) \<Longrightarrow> finite (S::'a set) \<Longrightarrow> \<exists>x. x \<notin> S" |
677 |
apply (drule Diff_infinite_finite) |
|
678 |
apply (simp add: at_def) |
|
679 |
apply blast |
|
680 |
apply (subgoal_tac "UNIV - S \<noteq> {}") |
|
681 |
apply (simp only: ex_in_conv [symmetric]) |
|
682 |
apply blast |
|
683 |
apply (rule notI) |
|
684 |
apply simp |
|
685 |
done |
|
686 |
||
19140 | 687 |
lemma at_different: |
19132 | 688 |
assumes at: "at TYPE('x)" |
19140 | 689 |
shows "\<exists>(b::'x). a\<noteq>b" |
19132 | 690 |
proof - |
19140 | 691 |
have "infinite (UNIV::'x set)" by (rule at4[OF at]) |
692 |
hence inf2: "infinite (UNIV-{a})" by (rule infinite_remove) |
|
19132 | 693 |
have "(UNIV-{a}) \<noteq> ({}::'x set)" |
694 |
proof (rule_tac ccontr, drule_tac notnotD) |
|
695 |
assume "UNIV-{a} = ({}::'x set)" |
|
696 |
with inf2 have "infinite ({}::'x set)" by simp |
|
697 |
then show "False" by (auto intro: infinite_nonempty) |
|
698 |
qed |
|
699 |
hence "\<exists>(b::'x). b\<in>(UNIV-{a})" by blast |
|
700 |
then obtain b::"'x" where mem2: "b\<in>(UNIV-{a})" by blast |
|
19140 | 701 |
from mem2 have "a\<noteq>b" by blast |
702 |
then show "\<exists>(b::'x). a\<noteq>b" by blast |
|
19132 | 703 |
qed |
704 |
||
17870 | 705 |
--"the at-props imply the pt-props" |
706 |
lemma at_pt_inst: |
|
707 |
assumes at: "at TYPE('x)" |
|
708 |
shows "pt TYPE('x) TYPE('x)" |
|
709 |
apply(auto simp only: pt_def) |
|
710 |
apply(simp only: at1[OF at]) |
|
711 |
apply(simp only: at_append[OF at]) |
|
18053
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
712 |
apply(simp only: prm_eq_def) |
17870 | 713 |
done |
714 |
||
715 |
section {* finite support properties *} |
|
716 |
(*===================================*) |
|
717 |
||
718 |
lemma fs1: |
|
719 |
fixes x :: "'a" |
|
720 |
assumes a: "fs TYPE('a) TYPE('x)" |
|
721 |
shows "finite ((supp x)::'x set)" |
|
722 |
using a by (simp add: fs_def) |
|
723 |
||
724 |
lemma fs_at_inst: |
|
725 |
fixes a :: "'x" |
|
726 |
assumes at: "at TYPE('x)" |
|
727 |
shows "fs TYPE('x) TYPE('x)" |
|
728 |
apply(simp add: fs_def) |
|
729 |
apply(simp add: at_supp[OF at]) |
|
730 |
done |
|
731 |
||
732 |
lemma fs_unit_inst: |
|
733 |
shows "fs TYPE(unit) TYPE('x)" |
|
734 |
apply(simp add: fs_def) |
|
735 |
apply(simp add: supp_unit) |
|
736 |
done |
|
737 |
||
738 |
lemma fs_prod_inst: |
|
739 |
assumes fsa: "fs TYPE('a) TYPE('x)" |
|
740 |
and fsb: "fs TYPE('b) TYPE('x)" |
|
741 |
shows "fs TYPE('a\<times>'b) TYPE('x)" |
|
742 |
apply(unfold fs_def) |
|
743 |
apply(auto simp add: supp_prod) |
|
744 |
apply(rule fs1[OF fsa]) |
|
745 |
apply(rule fs1[OF fsb]) |
|
746 |
done |
|
747 |
||
18600 | 748 |
lemma fs_nprod_inst: |
749 |
assumes fsa: "fs TYPE('a) TYPE('x)" |
|
750 |
and fsb: "fs TYPE('b) TYPE('x)" |
|
751 |
shows "fs TYPE(('a,'b) nprod) TYPE('x)" |
|
752 |
apply(unfold fs_def, rule allI) |
|
753 |
apply(case_tac x) |
|
754 |
apply(auto simp add: supp_nprod) |
|
755 |
apply(rule fs1[OF fsa]) |
|
756 |
apply(rule fs1[OF fsb]) |
|
757 |
done |
|
758 |
||
17870 | 759 |
lemma fs_list_inst: |
760 |
assumes fs: "fs TYPE('a) TYPE('x)" |
|
761 |
shows "fs TYPE('a list) TYPE('x)" |
|
762 |
apply(simp add: fs_def, rule allI) |
|
763 |
apply(induct_tac x) |
|
764 |
apply(simp add: supp_list_nil) |
|
765 |
apply(simp add: supp_list_cons) |
|
766 |
apply(rule fs1[OF fs]) |
|
767 |
done |
|
768 |
||
18431 | 769 |
lemma fs_option_inst: |
770 |
assumes fs: "fs TYPE('a) TYPE('x)" |
|
771 |
shows "fs TYPE('a option) TYPE('x)" |
|
17870 | 772 |
apply(simp add: fs_def, rule allI) |
18431 | 773 |
apply(case_tac x) |
774 |
apply(simp add: supp_none) |
|
775 |
apply(simp add: supp_some) |
|
776 |
apply(rule fs1[OF fs]) |
|
17870 | 777 |
done |
778 |
||
779 |
section {* Lemmas about the permutation properties *} |
|
780 |
(*=================================================*) |
|
781 |
||
782 |
lemma pt1: |
|
783 |
fixes x::"'a" |
|
784 |
assumes a: "pt TYPE('a) TYPE('x)" |
|
785 |
shows "([]::'x prm)\<bullet>x = x" |
|
786 |
using a by (simp add: pt_def) |
|
787 |
||
788 |
lemma pt2: |
|
789 |
fixes pi1::"'x prm" |
|
790 |
and pi2::"'x prm" |
|
791 |
and x ::"'a" |
|
792 |
assumes a: "pt TYPE('a) TYPE('x)" |
|
793 |
shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)" |
|
794 |
using a by (simp add: pt_def) |
|
795 |
||
796 |
lemma pt3: |
|
797 |
fixes pi1::"'x prm" |
|
798 |
and pi2::"'x prm" |
|
799 |
and x ::"'a" |
|
800 |
assumes a: "pt TYPE('a) TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
801 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x" |
17870 | 802 |
using a by (simp add: pt_def) |
803 |
||
804 |
lemma pt3_rev: |
|
805 |
fixes pi1::"'x prm" |
|
806 |
and pi2::"'x prm" |
|
807 |
and x ::"'a" |
|
808 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
809 |
and at: "at TYPE('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
810 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x" |
17870 | 811 |
by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at]) |
812 |
||
813 |
section {* composition properties *} |
|
814 |
(* ============================== *) |
|
815 |
lemma cp1: |
|
816 |
fixes pi1::"'x prm" |
|
817 |
and pi2::"'y prm" |
|
818 |
and x ::"'a" |
|
819 |
assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)" |
|
820 |
shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)" |
|
821 |
using cp by (simp add: cp_def) |
|
822 |
||
823 |
lemma cp_pt_inst: |
|
824 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
825 |
and at: "at TYPE('x)" |
|
826 |
shows "cp TYPE('a) TYPE('x) TYPE('x)" |
|
827 |
apply(auto simp add: cp_def pt2[OF pt,symmetric]) |
|
828 |
apply(rule pt3[OF pt]) |
|
829 |
apply(rule at_ds8[OF at]) |
|
830 |
done |
|
831 |
||
19638
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
832 |
section {* disjointness properties *} |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
833 |
(*=================================*) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
834 |
lemma dj_perm_forget: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
835 |
fixes pi::"'y prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
836 |
and x ::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
837 |
assumes dj: "disjoint TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
838 |
shows "pi\<bullet>x=x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
839 |
using dj by (simp_all add: disjoint_def) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
840 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
841 |
lemma dj_perm_perm_forget: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
842 |
fixes pi1::"'x prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
843 |
and pi2::"'y prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
844 |
assumes dj: "disjoint TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
845 |
shows "pi2\<bullet>pi1=pi1" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
846 |
using dj by (induct pi1, auto simp add: disjoint_def) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
847 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
848 |
lemma dj_cp: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
849 |
fixes pi1::"'x prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
850 |
and pi2::"'y prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
851 |
and x ::"'a" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
852 |
assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
853 |
and dj: "disjoint TYPE('y) TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
854 |
shows "pi1\<bullet>(pi2\<bullet>x) = (pi2)\<bullet>(pi1\<bullet>x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
855 |
by (simp add: cp1[OF cp] dj_perm_perm_forget[OF dj]) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
856 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
857 |
lemma dj_supp: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
858 |
fixes a::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
859 |
assumes dj: "disjoint TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
860 |
shows "(supp a) = ({}::'y set)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
861 |
apply(simp add: supp_def dj_perm_forget[OF dj]) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
862 |
done |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
863 |
|
17870 | 864 |
section {* permutation type instances *} |
865 |
(* ===================================*) |
|
866 |
||
867 |
lemma pt_set_inst: |
|
868 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
869 |
shows "pt TYPE('a set) TYPE('x)" |
|
870 |
apply(simp add: pt_def) |
|
871 |
apply(simp_all add: perm_set_def) |
|
872 |
apply(simp add: pt1[OF pt]) |
|
873 |
apply(force simp add: pt2[OF pt] pt3[OF pt]) |
|
874 |
done |
|
875 |
||
876 |
lemma pt_list_nil: |
|
877 |
fixes xs :: "'a list" |
|
878 |
assumes pt: "pt TYPE('a) TYPE ('x)" |
|
879 |
shows "([]::'x prm)\<bullet>xs = xs" |
|
880 |
apply(induct_tac xs) |
|
881 |
apply(simp_all add: pt1[OF pt]) |
|
882 |
done |
|
883 |
||
884 |
lemma pt_list_append: |
|
885 |
fixes pi1 :: "'x prm" |
|
886 |
and pi2 :: "'x prm" |
|
887 |
and xs :: "'a list" |
|
888 |
assumes pt: "pt TYPE('a) TYPE ('x)" |
|
889 |
shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)" |
|
890 |
apply(induct_tac xs) |
|
891 |
apply(simp_all add: pt2[OF pt]) |
|
892 |
done |
|
893 |
||
894 |
lemma pt_list_prm_eq: |
|
895 |
fixes pi1 :: "'x prm" |
|
896 |
and pi2 :: "'x prm" |
|
897 |
and xs :: "'a list" |
|
898 |
assumes pt: "pt TYPE('a) TYPE ('x)" |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
899 |
shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs" |
17870 | 900 |
apply(induct_tac xs) |
901 |
apply(simp_all add: prm_eq_def pt3[OF pt]) |
|
902 |
done |
|
903 |
||
904 |
lemma pt_list_inst: |
|
905 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
906 |
shows "pt TYPE('a list) TYPE('x)" |
|
907 |
apply(auto simp only: pt_def) |
|
908 |
apply(rule pt_list_nil[OF pt]) |
|
909 |
apply(rule pt_list_append[OF pt]) |
|
910 |
apply(rule pt_list_prm_eq[OF pt],assumption) |
|
911 |
done |
|
912 |
||
913 |
lemma pt_unit_inst: |
|
914 |
shows "pt TYPE(unit) TYPE('x)" |
|
915 |
by (simp add: pt_def) |
|
916 |
||
917 |
lemma pt_prod_inst: |
|
918 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
919 |
and ptb: "pt TYPE('b) TYPE('x)" |
|
920 |
shows "pt TYPE('a \<times> 'b) TYPE('x)" |
|
921 |
apply(auto simp add: pt_def) |
|
922 |
apply(rule pt1[OF pta]) |
|
923 |
apply(rule pt1[OF ptb]) |
|
924 |
apply(rule pt2[OF pta]) |
|
925 |
apply(rule pt2[OF ptb]) |
|
926 |
apply(rule pt3[OF pta],assumption) |
|
927 |
apply(rule pt3[OF ptb],assumption) |
|
928 |
done |
|
929 |
||
18600 | 930 |
lemma pt_nprod_inst: |
931 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
932 |
and ptb: "pt TYPE('b) TYPE('x)" |
|
933 |
shows "pt TYPE(('a,'b) nprod) TYPE('x)" |
|
934 |
apply(auto simp add: pt_def) |
|
935 |
apply(case_tac x) |
|
936 |
apply(simp add: pt1[OF pta] pt1[OF ptb]) |
|
937 |
apply(case_tac x) |
|
938 |
apply(simp add: pt2[OF pta] pt2[OF ptb]) |
|
939 |
apply(case_tac x) |
|
940 |
apply(simp add: pt3[OF pta] pt3[OF ptb]) |
|
941 |
done |
|
942 |
||
17870 | 943 |
lemma pt_fun_inst: |
944 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
945 |
and ptb: "pt TYPE('b) TYPE('x)" |
|
946 |
and at: "at TYPE('x)" |
|
947 |
shows "pt TYPE('a\<Rightarrow>'b) TYPE('x)" |
|
948 |
apply(auto simp only: pt_def) |
|
949 |
apply(simp_all add: perm_fun_def) |
|
950 |
apply(simp add: pt1[OF pta] pt1[OF ptb]) |
|
951 |
apply(simp add: pt2[OF pta] pt2[OF ptb]) |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
952 |
apply(subgoal_tac "(rev pi1) \<triangleq> (rev pi2)")(*A*) |
17870 | 953 |
apply(simp add: pt3[OF pta] pt3[OF ptb]) |
954 |
(*A*) |
|
955 |
apply(simp add: at_prm_rev_eq[OF at]) |
|
956 |
done |
|
957 |
||
958 |
lemma pt_option_inst: |
|
959 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
960 |
shows "pt TYPE('a option) TYPE('x)" |
|
961 |
apply(auto simp only: pt_def) |
|
962 |
apply(case_tac "x") |
|
963 |
apply(simp_all add: pt1[OF pta]) |
|
964 |
apply(case_tac "x") |
|
965 |
apply(simp_all add: pt2[OF pta]) |
|
966 |
apply(case_tac "x") |
|
967 |
apply(simp_all add: pt3[OF pta]) |
|
968 |
done |
|
969 |
||
970 |
lemma pt_noption_inst: |
|
971 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
18579
002d371401f5
changed the name of the type "nOption" to "noption".
urbanc
parents:
18578
diff
changeset
|
972 |
shows "pt TYPE('a noption) TYPE('x)" |
17870 | 973 |
apply(auto simp only: pt_def) |
974 |
apply(case_tac "x") |
|
975 |
apply(simp_all add: pt1[OF pta]) |
|
976 |
apply(case_tac "x") |
|
977 |
apply(simp_all add: pt2[OF pta]) |
|
978 |
apply(case_tac "x") |
|
979 |
apply(simp_all add: pt3[OF pta]) |
|
980 |
done |
|
981 |
||
982 |
section {* further lemmas for permutation types *} |
|
983 |
(*==============================================*) |
|
984 |
||
985 |
lemma pt_rev_pi: |
|
986 |
fixes pi :: "'x prm" |
|
987 |
and x :: "'a" |
|
988 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
989 |
and at: "at TYPE('x)" |
|
990 |
shows "(rev pi)\<bullet>(pi\<bullet>x) = x" |
|
991 |
proof - |
|
18295
dd50de393330
changed \<sim> of permutation equality to \<triangleq>
urbanc
parents:
18294
diff
changeset
|
992 |
have "((rev pi)@pi) \<triangleq> ([]::'x prm)" by (simp add: at_ds7[OF at]) |
17870 | 993 |
hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt]) |
994 |
thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt]) |
|
995 |
qed |
|
996 |
||
997 |
lemma pt_pi_rev: |
|
998 |
fixes pi :: "'x prm" |
|
999 |
and x :: "'a" |
|
1000 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1001 |
and at: "at TYPE('x)" |
|
1002 |
shows "pi\<bullet>((rev pi)\<bullet>x) = x" |
|
1003 |
by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified]) |
|
1004 |
||
1005 |
lemma pt_bij1: |
|
1006 |
fixes pi :: "'x prm" |
|
1007 |
and x :: "'a" |
|
1008 |
and y :: "'a" |
|
1009 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1010 |
and at: "at TYPE('x)" |
|
1011 |
and a: "(pi\<bullet>x) = y" |
|
1012 |
shows "x=(rev pi)\<bullet>y" |
|
1013 |
proof - |
|
1014 |
from a have "y=(pi\<bullet>x)" by (rule sym) |
|
1015 |
thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at]) |
|
1016 |
qed |
|
1017 |
||
1018 |
lemma pt_bij2: |
|
1019 |
fixes pi :: "'x prm" |
|
1020 |
and x :: "'a" |
|
1021 |
and y :: "'a" |
|
1022 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1023 |
and at: "at TYPE('x)" |
|
1024 |
and a: "x = (rev pi)\<bullet>y" |
|
1025 |
shows "(pi\<bullet>x)=y" |
|
1026 |
using a by (simp add: pt_pi_rev[OF pt, OF at]) |
|
1027 |
||
1028 |
lemma pt_bij: |
|
1029 |
fixes pi :: "'x prm" |
|
1030 |
and x :: "'a" |
|
1031 |
and y :: "'a" |
|
1032 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1033 |
and at: "at TYPE('x)" |
|
1034 |
shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)" |
|
1035 |
proof |
|
1036 |
assume "pi\<bullet>x = pi\<bullet>y" |
|
1037 |
hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) |
|
1038 |
thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at]) |
|
1039 |
next |
|
1040 |
assume "x=y" |
|
1041 |
thus "pi\<bullet>x = pi\<bullet>y" by simp |
|
1042 |
qed |
|
1043 |
||
1044 |
lemma pt_bij3: |
|
1045 |
fixes pi :: "'x prm" |
|
1046 |
and x :: "'a" |
|
1047 |
and y :: "'a" |
|
1048 |
assumes a: "x=y" |
|
1049 |
shows "(pi\<bullet>x = pi\<bullet>y)" |
|
1050 |
using a by simp |
|
1051 |
||
1052 |
lemma pt_bij4: |
|
1053 |
fixes pi :: "'x prm" |
|
1054 |
and x :: "'a" |
|
1055 |
and y :: "'a" |
|
1056 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1057 |
and at: "at TYPE('x)" |
|
1058 |
and a: "pi\<bullet>x = pi\<bullet>y" |
|
1059 |
shows "x = y" |
|
1060 |
using a by (simp add: pt_bij[OF pt, OF at]) |
|
1061 |
||
1062 |
lemma pt_swap_bij: |
|
1063 |
fixes a :: "'x" |
|
1064 |
and b :: "'x" |
|
1065 |
and x :: "'a" |
|
1066 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1067 |
and at: "at TYPE('x)" |
|
1068 |
shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x" |
|
1069 |
by (rule pt_bij2[OF pt, OF at], simp) |
|
1070 |
||
19164 | 1071 |
lemma pt_swap_bij': |
1072 |
fixes a :: "'x" |
|
1073 |
and b :: "'x" |
|
1074 |
and x :: "'a" |
|
1075 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1076 |
and at: "at TYPE('x)" |
|
1077 |
shows "[(a,b)]\<bullet>([(b,a)]\<bullet>x) = x" |
|
1078 |
apply(simp add: pt2[OF pt,symmetric]) |
|
1079 |
apply(rule trans) |
|
1080 |
apply(rule pt3[OF pt]) |
|
1081 |
apply(rule at_ds5'[OF at]) |
|
1082 |
apply(rule pt1[OF pt]) |
|
1083 |
done |
|
1084 |
||
17870 | 1085 |
lemma pt_set_bij1: |
1086 |
fixes pi :: "'x prm" |
|
1087 |
and x :: "'a" |
|
1088 |
and X :: "'a set" |
|
1089 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1090 |
and at: "at TYPE('x)" |
|
1091 |
shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))" |
|
1092 |
by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) |
|
1093 |
||
1094 |
lemma pt_set_bij1a: |
|
1095 |
fixes pi :: "'x prm" |
|
1096 |
and x :: "'a" |
|
1097 |
and X :: "'a set" |
|
1098 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1099 |
and at: "at TYPE('x)" |
|
1100 |
shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)" |
|
1101 |
by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) |
|
1102 |
||
1103 |
lemma pt_set_bij: |
|
1104 |
fixes pi :: "'x prm" |
|
1105 |
and x :: "'a" |
|
1106 |
and X :: "'a set" |
|
1107 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1108 |
and at: "at TYPE('x)" |
|
1109 |
shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)" |
|
18053
2719a6b7d95e
some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents:
18048
diff
changeset
|
1110 |
by (simp add: perm_set_def pt_bij[OF pt, OF at]) |
17870 | 1111 |
|
1112 |
lemma pt_set_bij2: |
|
1113 |
fixes pi :: "'x prm" |
|
1114 |
and x :: "'a" |
|
1115 |
and X :: "'a set" |
|
1116 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1117 |
and at: "at TYPE('x)" |
|
1118 |
and a: "x\<in>X" |
|
1119 |
shows "(pi\<bullet>x)\<in>(pi\<bullet>X)" |
|
1120 |
using a by (simp add: pt_set_bij[OF pt, OF at]) |
|
1121 |
||
18264 | 1122 |
lemma pt_set_bij2a: |
1123 |
fixes pi :: "'x prm" |
|
1124 |
and x :: "'a" |
|
1125 |
and X :: "'a set" |
|
1126 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1127 |
and at: "at TYPE('x)" |
|
1128 |
and a: "x\<in>((rev pi)\<bullet>X)" |
|
1129 |
shows "(pi\<bullet>x)\<in>X" |
|
1130 |
using a by (simp add: pt_set_bij1[OF pt, OF at]) |
|
1131 |
||
17870 | 1132 |
lemma pt_set_bij3: |
1133 |
fixes pi :: "'x prm" |
|
1134 |
and x :: "'a" |
|
1135 |
and X :: "'a set" |
|
1136 |
shows "pi\<bullet>(x\<in>X) = (x\<in>X)" |
|
1137 |
apply(case_tac "x\<in>X = True") |
|
1138 |
apply(auto) |
|
1139 |
done |
|
1140 |
||
18159
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1141 |
lemma pt_subseteq_eqvt: |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1142 |
fixes pi :: "'x prm" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1143 |
and Y :: "'a set" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1144 |
and X :: "'a set" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1145 |
assumes pt: "pt TYPE('a) TYPE('x)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1146 |
and at: "at TYPE('x)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1147 |
shows "((pi\<bullet>X)\<subseteq>(pi\<bullet>Y)) = (X\<subseteq>Y)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1148 |
proof (auto) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1149 |
fix x::"'a" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1150 |
assume a: "(pi\<bullet>X)\<subseteq>(pi\<bullet>Y)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1151 |
and "x\<in>X" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1152 |
hence "(pi\<bullet>x)\<in>(pi\<bullet>X)" by (simp add: pt_set_bij[OF pt, OF at]) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1153 |
with a have "(pi\<bullet>x)\<in>(pi\<bullet>Y)" by force |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1154 |
thus "x\<in>Y" by (simp add: pt_set_bij[OF pt, OF at]) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1155 |
next |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1156 |
fix x::"'a" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1157 |
assume a: "X\<subseteq>Y" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1158 |
and "x\<in>(pi\<bullet>X)" |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1159 |
thus "x\<in>(pi\<bullet>Y)" by (force simp add: pt_set_bij1a[OF pt, OF at]) |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1160 |
qed |
08282ca0402e
added a few equivariance lemmas (they need to be automated
urbanc
parents:
18068
diff
changeset
|
1161 |
|
19772
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1162 |
lemma pt_set_diff_eqvt: |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1163 |
fixes X::"'a set" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1164 |
and Y::"'a set" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1165 |
and pi::"'x prm" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1166 |
assumes pt: "pt TYPE('a) TYPE('x)" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1167 |
and at: "at TYPE('x)" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1168 |
shows "pi \<bullet> (X - Y) = (pi \<bullet> X) - (pi \<bullet> Y)" |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1169 |
by (auto simp add: perm_set_def pt_bij[OF pt, OF at]) |
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1170 |
|
45897b49fdd2
added some further lemmas that deal with permutations and set-operators
urbanc
parents:
19771
diff
changeset
|
1171 |
|
17870 | 1172 |
-- "some helper lemmas for the pt_perm_supp_ineq lemma" |
1173 |
lemma Collect_permI: |
|
1174 |
fixes pi :: "'x prm" |
|
1175 |
and x :: "'a" |
|
1176 |
assumes a: "\<forall>x. (P1 x = P2 x)" |
|
1177 |
shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}" |
|
1178 |
using a by force |
|
1179 |
||
1180 |
lemma Infinite_cong: |
|
1181 |
assumes a: "X = Y" |
|
1182 |
shows "infinite X = infinite Y" |
|
1183 |
using a by (simp) |
|
1184 |
||
1185 |
lemma pt_set_eq_ineq: |
|
1186 |
fixes pi :: "'y prm" |
|
1187 |
assumes pt: "pt TYPE('x) TYPE('y)" |
|
1188 |
and at: "at TYPE('y)" |
|
1189 |
shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}" |
|
1190 |
by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at]) |
|
1191 |
||
1192 |
lemma pt_inject_on_ineq: |
|
1193 |
fixes X :: "'y set" |
|
1194 |
and pi :: "'x prm" |
|
1195 |
assumes pt: "pt TYPE('y) TYPE('x)" |
|
1196 |
and at: "at TYPE('x)" |
|
1197 |
shows "inj_on (perm pi) X" |
|
1198 |
proof (unfold inj_on_def, intro strip) |
|
1199 |
fix x::"'y" and y::"'y" |
|
1200 |
assume "pi\<bullet>x = pi\<bullet>y" |
|
1201 |
thus "x=y" by (simp add: pt_bij[OF pt, OF at]) |
|
1202 |
qed |
|
1203 |
||
1204 |
lemma pt_set_finite_ineq: |
|
1205 |
fixes X :: "'x set" |
|
1206 |
and pi :: "'y prm" |
|
1207 |
assumes pt: "pt TYPE('x) TYPE('y)" |
|
1208 |
and at: "at TYPE('y)" |
|
1209 |
shows "finite (pi\<bullet>X) = finite X" |
|
1210 |
proof - |
|
1211 |
have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def) |
|
1212 |
show ?thesis |
|
1213 |
proof (rule iffI) |
|
1214 |
assume "finite (pi\<bullet>X)" |
|
1215 |
hence "finite (perm pi ` X)" using image by (simp) |
|
1216 |
thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD) |
|
1217 |
next |
|
1218 |
assume "finite X" |
|
1219 |
hence "finite (perm pi ` X)" by (rule finite_imageI) |
|
1220 |
thus "finite (pi\<bullet>X)" using image by (simp) |
|
1221 |
qed |
|
1222 |
qed |
|
1223 |
||
1224 |
lemma pt_set_infinite_ineq: |
|
1225 |
fixes X :: "'x set" |
|
1226 |
and pi :: "'y prm" |
|
1227 |
assumes pt: "pt TYPE('x) TYPE('y)" |
|
1228 |
and at: "at TYPE('y)" |
|
1229 |
shows "infinite (pi\<bullet>X) = infinite X" |
|
1230 |
using pt at by (simp add: pt_set_finite_ineq) |
|
1231 |
||
1232 |
lemma pt_perm_supp_ineq: |
|
1233 |
fixes pi :: "'x prm" |
|
1234 |
and x :: "'a" |
|
1235 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1236 |
and ptb: "pt TYPE('y) TYPE('x)" |
|
1237 |
and at: "at TYPE('x)" |
|
1238 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)" |
|
1239 |
shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS") |
|
1240 |
proof - |
|
1241 |
have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def) |
|
1242 |
also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}" |
|
1243 |
proof (rule Collect_permI, rule allI, rule iffI) |
|
1244 |
fix a |
|
1245 |
assume "infinite {b::'y. [(a,b)]\<bullet>x \<noteq> x}" |
|
1246 |
hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at]) |
|
1247 |
thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: perm_set_def) |
|
1248 |
next |
|
1249 |
fix a |
|
1250 |
assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}" |
|
1251 |
hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def) |
|
1252 |
thus "infinite {b::'y. [(a,b)]\<bullet>x \<noteq> x}" |
|
1253 |
by (simp add: pt_set_infinite_ineq[OF ptb, OF at]) |
|
1254 |
qed |
|
1255 |
also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}" |
|
1256 |
by (simp add: pt_set_eq_ineq[OF ptb, OF at]) |
|
1257 |
also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}" |
|
1258 |
by (simp add: pt_bij[OF pta, OF at]) |
|
1259 |
also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}" |
|
1260 |
proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong) |
|
1261 |
fix a::"'y" and b::"'y" |
|
1262 |
have "pi\<bullet>(([((rev pi)\<bullet>a,(rev pi)\<bullet>b)])\<bullet>x) = [(a,b)]\<bullet>(pi\<bullet>x)" |
|
1263 |
by (simp add: cp1[OF cp] pt_pi_rev[OF ptb, OF at]) |
|
1264 |
thus "(pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> pi\<bullet>x) = ([(a,b)]\<bullet>(pi\<bullet>x) \<noteq> pi\<bullet>x)" by simp |
|
1265 |
qed |
|
1266 |
finally show "?LHS = ?RHS" by (simp add: supp_def) |
|
1267 |
qed |
|
1268 |
||
1269 |
lemma pt_perm_supp: |
|
1270 |
fixes pi :: "'x prm" |
|
1271 |
and x :: "'a" |
|
1272 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1273 |
and at: "at TYPE('x)" |
|
1274 |
shows "(pi\<bullet>((supp x)::'x set)) = supp (pi\<bullet>x)" |
|
1275 |
apply(rule pt_perm_supp_ineq) |
|
1276 |
apply(rule pt) |
|
1277 |
apply(rule at_pt_inst) |
|
1278 |
apply(rule at)+ |
|
1279 |
apply(rule cp_pt_inst) |
|
1280 |
apply(rule pt) |
|
1281 |
apply(rule at) |
|
1282 |
done |
|
1283 |
||
1284 |
lemma pt_supp_finite_pi: |
|
1285 |
fixes pi :: "'x prm" |
|
1286 |
and x :: "'a" |
|
1287 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1288 |
and at: "at TYPE('x)" |
|
1289 |
and f: "finite ((supp x)::'x set)" |
|
1290 |
shows "finite ((supp (pi\<bullet>x))::'x set)" |
|
1291 |
apply(simp add: pt_perm_supp[OF pt, OF at, symmetric]) |
|
1292 |
apply(simp add: pt_set_finite_ineq[OF at_pt_inst[OF at], OF at]) |
|
1293 |
apply(rule f) |
|
1294 |
done |
|
1295 |
||
1296 |
lemma pt_fresh_left_ineq: |
|
1297 |
fixes pi :: "'x prm" |
|
1298 |
and x :: "'a" |
|
1299 |
and a :: "'y" |
|
1300 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1301 |
and ptb: "pt TYPE('y) TYPE('x)" |
|
1302 |
and at: "at TYPE('x)" |
|
1303 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)" |
|
1304 |
shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x" |
|
1305 |
apply(simp add: fresh_def) |
|
1306 |
apply(simp add: pt_set_bij1[OF ptb, OF at]) |
|
1307 |
apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp]) |
|
1308 |
done |
|
1309 |
||
1310 |
lemma pt_fresh_right_ineq: |
|
1311 |
fixes pi :: "'x prm" |
|
1312 |
and x :: "'a" |
|
1313 |
and a :: "'y" |
|
1314 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1315 |
and ptb: "pt TYPE('y) TYPE('x)" |
|
1316 |
and at: "at TYPE('x)" |
|
1317 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)" |
|
1318 |
shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)" |
|
1319 |
apply(simp add: fresh_def) |
|
1320 |
apply(simp add: pt_set_bij1[OF ptb, OF at]) |
|
1321 |
apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp]) |
|
1322 |
done |
|
1323 |
||
1324 |
lemma pt_fresh_bij_ineq: |
|
1325 |
fixes pi :: "'x prm" |
|
1326 |
and x :: "'a" |
|
1327 |
and a :: "'y" |
|
1328 |
assumes pta: "pt TYPE('a) TYPE('x)" |
|
1329 |
and ptb: "pt TYPE('y) TYPE('x)" |
|
1330 |
and at: "at TYPE('x)" |
|
1331 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)" |
|
1332 |
shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x" |
|
1333 |
apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp]) |
|
1334 |
apply(simp add: pt_rev_pi[OF ptb, OF at]) |
|
1335 |
done |
|
1336 |
||
1337 |
lemma pt_fresh_left: |
|
1338 |
fixes pi :: "'x prm" |
|
1339 |
and x :: "'a" |
|
1340 |
and a :: "'x" |
|
1341 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1342 |
and at: "at TYPE('x)" |
|
1343 |
shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x" |
|
1344 |
apply(rule pt_fresh_left_ineq) |
|
1345 |
apply(rule pt) |
|
1346 |
apply(rule at_pt_inst) |
|
1347 |
apply(rule at)+ |
|
1348 |
apply(rule cp_pt_inst) |
|
1349 |
apply(rule pt) |
|
1350 |
apply(rule at) |
|
1351 |
done |
|
1352 |
||
1353 |
lemma pt_fresh_right: |
|
1354 |
fixes pi :: "'x prm" |
|
1355 |
and x :: "'a" |
|
1356 |
and a :: "'x" |
|
1357 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1358 |
and at: "at TYPE('x)" |
|
1359 |
shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)" |
|
1360 |
apply(rule pt_fresh_right_ineq) |
|
1361 |
apply(rule pt) |
|
1362 |
apply(rule at_pt_inst) |
|
1363 |
apply(rule at)+ |
|
1364 |
apply(rule cp_pt_inst) |
|
1365 |
apply(rule pt) |
|
1366 |
apply(rule at) |
|
1367 |
done |
|
1368 |
||
1369 |
lemma pt_fresh_bij: |
|
1370 |
fixes pi :: "'x prm" |
|
1371 |
and x :: "'a" |
|
1372 |
and a :: "'x" |
|
1373 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1374 |
and at: "at TYPE('x)" |
|
1375 |
shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x" |
|
1376 |
apply(rule pt_fresh_bij_ineq) |
|
1377 |
apply(rule pt) |
|
1378 |
apply(rule at_pt_inst) |
|
1379 |
apply(rule at)+ |
|
1380 |
apply(rule cp_pt_inst) |
|
1381 |
apply(rule pt) |
|
1382 |
apply(rule at) |
|
1383 |
done |
|
1384 |
||
1385 |
lemma pt_fresh_bij1: |
|
1386 |
fixes pi :: "'x prm" |
|
1387 |
and x :: "'a" |
|
1388 |
and a :: "'x" |
|
1389 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1390 |
and at: "at TYPE('x)" |
|
1391 |
and a: "a\<sharp>x" |
|
1392 |
shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x)" |
|
1393 |
using a by (simp add: pt_fresh_bij[OF pt, OF at]) |
|
1394 |
||
19566 | 1395 |
lemma pt_fresh_bij2: |
1396 |
fixes pi :: "'x prm" |
|
1397 |
and x :: "'a" |
|
1398 |
and a :: "'x" |
|
1399 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1400 |
and at: "at TYPE('x)" |
|
1401 |
and a: "(pi\<bullet>a)\<sharp>(pi\<bullet>x)" |
|
1402 |
shows "a\<sharp>x" |
|
1403 |
using a by (simp add: pt_fresh_bij[OF pt, OF at]) |
|
1404 |
||
17870 | 1405 |
lemma pt_perm_fresh1: |
1406 |
fixes a :: "'x" |
|
1407 |
and b :: "'x" |
|
1408 |
and x :: "'a" |
|
1409 |
assumes pt: "pt TYPE('a) TYPE('x)" |
|
1410 |
and at: "at TYPE ('x)" |
|
1411 |
and a1: "\<not>(a\<sharp>x)" |
|
1412 |
and a2: "b\<sharp>x" |
|
1413 |
shows "[(a,b)]\<bullet>x \<noteq> x" |
|
1414 |
proof |
|
1415 |
assume neg: "[(a,b)]\<bullet>x = x" |
|
1416 |
from a1 have a1':"a\<in>(supp x)" by (simp add: fresh_def) |
|
1417 |
from a2 have a2':"b\<notin>(supp x)" by (simp add: fresh_def) |
|
1418 |
from a1' a2' have a3: "a\<noteq>b" by force |
|
1419 |
from a1' have "([(a,b)]\<bullet>a)\<in>([(a,b)]\<bullet>(supp x))" |
|
1420 |
by (simp only: pt_set_bij[OF at_pt_inst[OF at], OF at]) |
|
19325 | 1421 |
hence "b\<in>([(a,b)]\<bullet>(supp x))" by (simp add: at_calc[OF at]) |
17870 | 1422 |
hence "b\<in>(supp ([(a,b)]\<bullet>x))" by (simp add: pt_perm_supp[OF pt,OF at]) |
1423 |
with a2' neg show False by simp |
|
1424 |
qed |
|
1425 |
||
19638
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1426 |
(* the next two lemmas are needed in the proof *) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1427 |
(* of the structural induction principle *) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1428 |
lemma pt_fresh_aux: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1429 |
fixes a::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1430 |
and b::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1431 |
and c::"'x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1432 |
and x::"'a" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1433 |
assumes pt: "pt TYPE('a) TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1434 |
and at: "at TYPE ('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1435 |
assumes a1: "c\<noteq>a" and a2: "a\<sharp>x" and a3: "c\<sharp>x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1436 |
shows "c\<sharp>([(a,b)]\<bullet>x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1437 |
using a1 a2 a3 by (simp_all add: pt_fresh_left[OF pt, OF at] at_calc[OF at]) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1438 |
|
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1439 |
lemma pt_fresh_aux_ineq: |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1440 |
fixes pi::"'x prm" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1441 |
and c::"'y" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1442 |
and x::"'a" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1443 |
assumes pta: "pt TYPE('a) TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1444 |
and ptb: "pt TYPE('y) TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1445 |
and at: "at TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1446 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1447 |
and dj: "disjoint TYPE('y) TYPE('x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1448 |
assumes a: "c\<sharp>x" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1449 |
shows "c\<sharp>(pi\<bullet>x)" |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1450 |
using a by (simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj]) |
4358b88a9d12
added the lemmas pt_fresh_aux and pt_fresh_aux_ineq
urbanc
parents:
19634
diff
changeset
|
1451 |
|
17870 | 1452 |
-- "three helper lemmas for the perm_fresh_fresh-lemma" |
1453 |
lemma comprehension_neg_UNIV: "{b. \<not> P b} = UNIV - {b. P b}" |
|
1454 |
by (auto) |
|
1455 |
||
c35381811d5c
Initial revision.
bergho |