src/Pure/tactic.ML
author wenzelm
Fri Jun 17 18:33:08 2005 +0200 (2005-06-17)
changeset 16425 2427be27cc60
parent 16325 a6431098a929
child 16666 9a987b59ecab
permissions -rw-r--r--
accomodate identification of type Sign.sg and theory;
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@11774
     9
signature BASIC_TACTIC =
wenzelm@11774
    10
sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
wenzelm@10805
    12
  val assume_tac        : int -> tactic
wenzelm@10805
    13
  val atac      : int ->tactic
wenzelm@10817
    14
  val bimatch_from_nets_tac:
paulson@1501
    15
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    16
  val bimatch_tac       : (bool*thm)list -> int -> tactic
wenzelm@10817
    17
  val biresolution_from_nets_tac:
wenzelm@10805
    18
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    19
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
wenzelm@10817
    20
  val biresolve_from_nets_tac:
paulson@1501
    21
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    22
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    23
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    24
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    25
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10817
    26
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) ->
paulson@3409
    27
                          int -> tactic
wenzelm@10817
    28
  val compose_tac       : (bool * thm * int) -> int -> tactic
wenzelm@10805
    29
  val cut_facts_tac     : thm list -> int -> tactic
paulson@13650
    30
  val cut_rules_tac     : thm list -> int -> tactic
wenzelm@10817
    31
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic
oheimb@7491
    32
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    33
  val defer_tac         : int -> tactic
wenzelm@10805
    34
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    35
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    36
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10817
    37
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    38
  val dtac              : thm -> int ->tactic
oheimb@7491
    39
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    40
  val etac              : thm -> int ->tactic
wenzelm@10817
    41
  val eq_assume_tac     : int -> tactic
wenzelm@10805
    42
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    43
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    44
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    45
  val fatac             : thm -> int -> int -> tactic
wenzelm@10817
    46
  val filter_prems_tac  : (term -> bool) -> int -> tactic
wenzelm@10805
    47
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    48
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    49
  val flexflex_tac      : tactic
wenzelm@10805
    50
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    51
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    52
  val fold_tac          : thm list -> tactic
wenzelm@10817
    53
  val forward_tac       : thm list -> int -> tactic
wenzelm@10805
    54
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    55
  val ftac              : thm -> int ->tactic
wenzelm@12320
    56
  val insert_tagged_brl : ('a * (bool * thm)) *
wenzelm@12320
    57
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    58
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@12320
    59
  val delete_tagged_brl : (bool * thm) *
wenzelm@12320
    60
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    61
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@10805
    62
  val is_fact           : thm -> bool
wenzelm@10805
    63
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    64
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    65
  val make_elim         : thm -> thm
wenzelm@10805
    66
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    67
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    68
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    69
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    70
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    71
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    72
  val net_resolve_tac   : thm list -> int -> tactic
ballarin@15696
    73
  val norm_hhf_plain    : thm -> thm
wenzelm@12801
    74
  val norm_hhf_rule     : thm -> thm
wenzelm@10805
    75
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    76
  val prune_params_tac  : tactic
wenzelm@10805
    77
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    78
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    79
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    80
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    81
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10817
    82
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic
wenzelm@10444
    83
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    84
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    85
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    86
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    87
  val rewrite_tac       : thm list -> tactic
wenzelm@10805
    88
  val rewtac            : thm -> tactic
wenzelm@10805
    89
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    90
  val rtac              : thm -> int -> tactic
wenzelm@10805
    91
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    92
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    93
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
    94
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
    95
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
    96
  val term_lift_inst_rule       :
berghofe@15797
    97
      thm * int * ((indexname * sort) * typ) list * ((indexname * typ) * term) list * thm
nipkow@1975
    98
      -> thm
oheimb@10347
    99
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
   100
  val thin_tac          : string -> int -> tactic
wenzelm@10805
   101
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
wenzelm@11774
   102
end;
clasohm@0
   103
wenzelm@11774
   104
signature TACTIC =
wenzelm@11774
   105
sig
wenzelm@11774
   106
  include BASIC_TACTIC
wenzelm@11929
   107
  val innermost_params: int -> thm -> (string * typ) list
wenzelm@11774
   108
  val untaglist: (int * 'a) list -> 'a list
wenzelm@11774
   109
  val orderlist: (int * 'a) list -> 'a list
wenzelm@11774
   110
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@11774
   111
  val simplify: bool -> thm list -> thm -> thm
wenzelm@12139
   112
  val conjunction_tac: tactic
wenzelm@15874
   113
  val smart_conjunction_tac: int -> tactic
wenzelm@16425
   114
  val prove_multi_plain: theory -> string list -> term list -> term list ->
ballarin@16325
   115
    (thm list -> tactic) -> thm list
wenzelm@16425
   116
  val prove_multi: theory -> string list -> term list -> term list ->
wenzelm@15874
   117
    (thm list -> tactic) -> thm list
wenzelm@16425
   118
  val prove_multi_standard: theory -> string list -> term list -> term list ->
wenzelm@15874
   119
    (thm list -> tactic) -> thm list
wenzelm@16425
   120
  val prove_plain: theory -> string list -> term list -> term -> (thm list -> tactic) -> thm
wenzelm@16425
   121
  val prove: theory -> string list -> term list -> term -> (thm list -> tactic) -> thm
wenzelm@16425
   122
  val prove_standard: theory -> string list -> term list -> term ->
wenzelm@15874
   123
    (thm list -> tactic) -> thm
berghofe@15442
   124
  val compose_inst_tac' : (indexname * string) list -> (bool * thm * int) ->
berghofe@15442
   125
                          int -> tactic
berghofe@15442
   126
  val lift_inst_rule'   : thm * int * (indexname * string) list * thm -> thm
berghofe@15464
   127
  val eres_inst_tac'    : (indexname * string) list -> thm -> int -> tactic
berghofe@15442
   128
  val res_inst_tac'     : (indexname * string) list -> thm -> int -> tactic
berghofe@15797
   129
  val instantiate_tac'  : (indexname * string) list -> tactic
wenzelm@11774
   130
end;
clasohm@0
   131
wenzelm@11774
   132
structure Tactic: TACTIC =
clasohm@0
   133
struct
clasohm@0
   134
paulson@1501
   135
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
wenzelm@10817
   136
fun trace_goalno_tac tac i st =
wenzelm@4270
   137
    case Seq.pull(tac i st) of
skalberg@15531
   138
        NONE    => Seq.empty
wenzelm@12262
   139
      | seqcell => (tracing ("Subgoal " ^ string_of_int i ^ " selected");
wenzelm@10805
   140
                         Seq.make(fn()=> seqcell));
clasohm@0
   141
clasohm@0
   142
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   143
fun rule_by_tactic tac rl =
paulson@2688
   144
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   145
  in case Seq.pull (tac st)  of
skalberg@15531
   146
        NONE        => raise THM("rule_by_tactic", 0, [rl])
skalberg@15531
   147
      | SOME(st',_) => Thm.varifyT (thaw st')
paulson@2688
   148
  end;
wenzelm@10817
   149
clasohm@0
   150
(*** Basic tactics ***)
clasohm@0
   151
clasohm@0
   152
(*** The following fail if the goal number is out of range:
clasohm@0
   153
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   154
clasohm@0
   155
(*Solve subgoal i by assumption*)
clasohm@0
   156
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   157
clasohm@0
   158
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   159
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   160
clasohm@0
   161
(** Resolution/matching tactics **)
clasohm@0
   162
clasohm@0
   163
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   164
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   165
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   166
clasohm@0
   167
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   168
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   169
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   170
clasohm@0
   171
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   172
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   173
clasohm@0
   174
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   175
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   176
clasohm@0
   177
(*Resolution with elimination rules only*)
clasohm@0
   178
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   179
clasohm@0
   180
(*Forward reasoning using destruction rules.*)
clasohm@0
   181
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   182
clasohm@0
   183
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   184
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   185
clasohm@0
   186
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   187
val atac    =   assume_tac;
oheimb@7491
   188
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   189
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   190
fun etac rl = eresolve_tac [rl];
oheimb@7491
   191
fun ftac rl =  forward_tac [rl];
oheimb@7491
   192
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   193
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   194
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   195
clasohm@0
   196
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   197
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   198
wenzelm@5263
   199
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   200
clasohm@0
   201
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   202
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   203
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   204
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   205
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   206
clasohm@0
   207
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   208
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   209
paulson@3409
   210
paulson@3409
   211
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   212
local
paulson@3409
   213
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   214
in
wenzelm@10817
   215
fun distinct_subgoals_tac state =
paulson@3409
   216
    let val (frozth,thawfn) = freeze_thaw state
wenzelm@10805
   217
        val froz_prems = cprems_of frozth
wenzelm@10805
   218
        val assumed = implies_elim_list frozth (map assume froz_prems)
wenzelm@10805
   219
        val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
wenzelm@10805
   220
                                        assumed;
paulson@15977
   221
    in  (*Applying Thm.varifyT to the result of thawfn would (re-)generalize
paulson@15977
   222
          all type variables that appear in the subgoals. Unfortunately, it
paulson@15977
   223
          would also break the function AxClass.intro_classes_tac, even in the
paulson@15977
   224
          trivial case where the type class has no axioms.*)
paulson@15977
   225
        Seq.single (thawfn implied)
paulson@15977
   226
    end
wenzelm@10817
   227
end;
paulson@3409
   228
paulson@3409
   229
wenzelm@11929
   230
(*Determine print names of goal parameters (reversed)*)
wenzelm@11929
   231
fun innermost_params i st =
wenzelm@11929
   232
  let val (_, _, Bi, _) = dest_state (st, i)
wenzelm@11929
   233
  in rename_wrt_term Bi (Logic.strip_params Bi) end;
wenzelm@11929
   234
paulson@15453
   235
(*params of subgoal i as they are printed*)
paulson@15453
   236
fun params_of_state st i =
paulson@15453
   237
  let val (_, _, Bi, _) = dest_state(st,i)
paulson@15453
   238
      val params = Logic.strip_params Bi
paulson@15453
   239
  in rev(rename_wrt_term Bi params) end;
wenzelm@16425
   240
paulson@15453
   241
(*read instantiations with respect to subgoal i of proof state st*)
paulson@15453
   242
fun read_insts_in_state (st, i, sinsts, rule) =
wenzelm@16425
   243
  let val thy = Thm.theory_of_thm st
wenzelm@16425
   244
      and params = params_of_state st i
wenzelm@16425
   245
      and rts = types_sorts rule and (types,sorts) = types_sorts st
wenzelm@16425
   246
      fun types'(a, ~1) = (case assoc_string (params, a) of NONE => types (a, ~1) | sm => sm)
wenzelm@16425
   247
        | types' ixn = types ixn;
wenzelm@16425
   248
      val used = Drule.add_used rule (Drule.add_used st []);
wenzelm@16425
   249
  in read_insts thy rts (types',sorts) used sinsts end;
paulson@15453
   250
clasohm@0
   251
(*Lift and instantiate a rule wrt the given state and subgoal number *)
berghofe@15442
   252
fun lift_inst_rule' (st, i, sinsts, rule) =
paulson@15453
   253
let val (Tinsts,insts) = read_insts_in_state (st, i, sinsts, rule)
paulson@15453
   254
    and {maxidx,...} = rep_thm st
paulson@15453
   255
    and params = params_of_state st i
clasohm@0
   256
    val paramTs = map #2 params
clasohm@0
   257
    and inc = maxidx+1
clasohm@0
   258
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   259
      | liftvar t = raise TERM("Variable expected", [t]);
wenzelm@10817
   260
    fun liftterm t = list_abs_free (params,
wenzelm@10805
   261
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   262
    (*Lifts instantiation pair over params*)
lcp@230
   263
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
berghofe@15797
   264
    val lifttvar = pairself (ctyp_fun (incr_tvar inc))
paulson@8129
   265
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@8129
   266
                     (lift_rule (st,i) rule)
clasohm@0
   267
end;
clasohm@0
   268
berghofe@15442
   269
fun lift_inst_rule (st, i, sinsts, rule) = lift_inst_rule'
berghofe@15442
   270
  (st, i, map (apfst Syntax.indexname) sinsts, rule);
berghofe@15442
   271
nipkow@3984
   272
(*
nipkow@3984
   273
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   274
Bounds referring to parameters of the subgoal.
nipkow@3984
   275
nipkow@3984
   276
insts: [...,(vj,tj),...]
nipkow@3984
   277
nipkow@3984
   278
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   279
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   280
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   281
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   282
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   283
nipkow@3984
   284
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   285
    i.e. Tinsts is not applied to insts.
nipkow@3984
   286
*)
nipkow@1975
   287
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
wenzelm@16425
   288
let val {maxidx,thy,...} = rep_thm st
paulson@15453
   289
    val paramTs = map #2 (params_of_state st i)
nipkow@1966
   290
    and inc = maxidx+1
nipkow@1975
   291
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   292
    (*lift only Var, not term, which must be lifted already*)
wenzelm@16425
   293
    fun liftpair (v,t) = (cterm_of thy (liftvar v), cterm_of thy t)
berghofe@15797
   294
    fun liftTpair (((a, i), S), T) =
wenzelm@16425
   295
      (ctyp_of thy (TVar ((a, i + inc), S)),
wenzelm@16425
   296
       ctyp_of thy (incr_tvar inc T))
paulson@8129
   297
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
paulson@8129
   298
                     (lift_rule (st,i) rule)
nipkow@1966
   299
end;
clasohm@0
   300
clasohm@0
   301
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   302
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   303
clasohm@0
   304
(*compose version: arguments are as for bicompose.*)
berghofe@15442
   305
fun gen_compose_inst_tac instf sinsts (bires_flg, rule, nsubgoal) i st =
paulson@8977
   306
  if i > nprems_of st then no_tac st
paulson@8977
   307
  else st |>
berghofe@15442
   308
    (compose_tac (bires_flg, instf (st, i, sinsts, rule), nsubgoal) i
wenzelm@12262
   309
     handle TERM (msg,_)   => (warning msg;  no_tac)
wenzelm@12262
   310
          | THM  (msg,_,_) => (warning msg;  no_tac));
clasohm@0
   311
berghofe@15442
   312
val compose_inst_tac = gen_compose_inst_tac lift_inst_rule;
berghofe@15442
   313
val compose_inst_tac' = gen_compose_inst_tac lift_inst_rule';
berghofe@15442
   314
lcp@761
   315
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   316
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   317
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   318
paulson@2029
   319
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   320
  were introduced during type inference and still remain in the term at the
nipkow@952
   321
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   322
  goals.
lcp@761
   323
*)
clasohm@0
   324
fun res_inst_tac sinsts rule i =
clasohm@0
   325
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   326
berghofe@15442
   327
fun res_inst_tac' sinsts rule i =
berghofe@15442
   328
    compose_inst_tac' sinsts (false, rule, nprems_of rule) i;
berghofe@15442
   329
paulson@1501
   330
(*eresolve elimination version*)
clasohm@0
   331
fun eres_inst_tac sinsts rule i =
clasohm@0
   332
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   333
berghofe@15464
   334
fun eres_inst_tac' sinsts rule i =
berghofe@15464
   335
    compose_inst_tac' sinsts (true, rule, nprems_of rule) i;
berghofe@15464
   336
lcp@270
   337
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   338
  increment revcut_rl instead.*)
wenzelm@10817
   339
fun make_elim_preserve rl =
lcp@270
   340
  let val {maxidx,...} = rep_thm rl
wenzelm@16425
   341
      fun cvar ixn = cterm_of ProtoPure.thy (Var(ixn,propT));
wenzelm@10817
   342
      val revcut_rl' =
wenzelm@10805
   343
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   344
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   345
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   346
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   347
  in  th  end
clasohm@0
   348
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   349
lcp@270
   350
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   351
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   352
lcp@270
   353
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   354
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   355
lcp@270
   356
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   357
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   358
oheimb@10347
   359
(*instantiate variables in the whole state*)
oheimb@10347
   360
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   361
berghofe@15797
   362
val instantiate_tac' = PRIMITIVE o Drule.read_instantiate';
berghofe@15797
   363
paulson@1951
   364
(*Deletion of an assumption*)
paulson@1951
   365
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   366
lcp@270
   367
(*** Applications of cut_rl ***)
clasohm@0
   368
clasohm@0
   369
(*Used by metacut_tac*)
clasohm@0
   370
fun bires_cut_tac arg i =
clasohm@1460
   371
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   372
clasohm@0
   373
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   374
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   375
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   376
clasohm@0
   377
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   378
fun is_fact rl =
clasohm@0
   379
    case prems_of rl of
wenzelm@10805
   380
        [] => true  |  _::_ => false;
clasohm@0
   381
paulson@13650
   382
(*"Cut" a list of rules into the goal.  Their premises will become new
paulson@13650
   383
  subgoals.*)
paulson@13650
   384
fun cut_rules_tac ths i = EVERY (map (fn th => metacut_tac th i) ths);
paulson@13650
   385
paulson@13650
   386
(*As above, but inserts only facts (unconditional theorems);
paulson@13650
   387
  generates no additional subgoals. *)
skalberg@15570
   388
fun cut_facts_tac ths = cut_rules_tac  (List.filter is_fact ths);
clasohm@0
   389
clasohm@0
   390
(*Introduce the given proposition as a lemma and subgoal*)
wenzelm@12847
   391
fun subgoal_tac sprop =
wenzelm@12847
   392
  DETERM o res_inst_tac [("psi", sprop)] cut_rl THEN' SUBGOAL (fn (prop, _) =>
wenzelm@12847
   393
    let val concl' = Logic.strip_assums_concl prop in
paulson@4178
   394
      if null (term_tvars concl') then ()
paulson@4178
   395
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@12847
   396
      all_tac
wenzelm@12847
   397
  end);
clasohm@0
   398
lcp@439
   399
(*Introduce a list of lemmas and subgoals*)
lcp@439
   400
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   401
clasohm@0
   402
clasohm@0
   403
(**** Indexing and filtering of theorems ****)
clasohm@0
   404
clasohm@0
   405
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   406
        using the predicate  could(subgoal,concl).
clasohm@0
   407
  Resulting list is no longer than "limit"*)
clasohm@0
   408
fun filter_thms could (limit, prem, ths) =
clasohm@0
   409
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   410
      fun filtr (limit, []) = []
wenzelm@10805
   411
        | filtr (limit, th::ths) =
wenzelm@10805
   412
            if limit=0 then  []
wenzelm@10805
   413
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   414
            else filtr(limit,ths)
clasohm@0
   415
  in  filtr(limit,ths)  end;
clasohm@0
   416
clasohm@0
   417
clasohm@0
   418
(*** biresolution and resolution using nets ***)
clasohm@0
   419
clasohm@0
   420
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   421
clasohm@0
   422
(*insert tags*)
clasohm@0
   423
fun taglist k [] = []
clasohm@0
   424
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   425
clasohm@0
   426
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   427
fun untaglist [] = []
clasohm@0
   428
  | untaglist [(k:int,x)] = [x]
clasohm@0
   429
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   430
      if k=k' then untaglist rest
clasohm@0
   431
      else    x :: untaglist rest;
clasohm@0
   432
clasohm@0
   433
(*return list elements in original order*)
wenzelm@10817
   434
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls);
clasohm@0
   435
clasohm@0
   436
(*insert one tagged brl into the pair of nets*)
wenzelm@12320
   437
fun insert_tagged_brl (kbrl as (k, (eres, th)), (inet, enet)) =
wenzelm@12320
   438
  if eres then
wenzelm@12320
   439
    (case try Thm.major_prem_of th of
skalberg@15531
   440
      SOME prem => (inet, Net.insert_term ((prem, kbrl), enet, K false))
skalberg@15531
   441
    | NONE => error "insert_tagged_brl: elimination rule with no premises")
wenzelm@12320
   442
  else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   443
clasohm@0
   444
(*build a pair of nets for biresolution*)
wenzelm@10817
   445
fun build_netpair netpair brls =
skalberg@15574
   446
    foldr insert_tagged_brl netpair (taglist 1 brls);
clasohm@0
   447
wenzelm@12320
   448
(*delete one kbrl from the pair of nets*)
paulson@1801
   449
local
wenzelm@13105
   450
  fun eq_kbrl ((_, (_, th)), (_, (_, th'))) = Drule.eq_thm_prop (th, th')
paulson@1801
   451
in
wenzelm@12320
   452
fun delete_tagged_brl (brl as (eres, th), (inet, enet)) =
paulson@13925
   453
  (if eres then
wenzelm@12320
   454
    (case try Thm.major_prem_of th of
skalberg@15531
   455
      SOME prem => (inet, Net.delete_term ((prem, ((), brl)), enet, eq_kbrl))
skalberg@15531
   456
    | NONE => (inet, enet))  (*no major premise: ignore*)
paulson@13925
   457
  else (Net.delete_term ((Thm.concl_of th, ((), brl)), inet, eq_kbrl), enet))
paulson@13925
   458
  handle Net.DELETE => (inet,enet);
paulson@1801
   459
end;
paulson@1801
   460
paulson@1801
   461
wenzelm@10817
   462
(*biresolution using a pair of nets rather than rules.
paulson@3706
   463
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   464
    boolean "match" indicates matching or unification.*)
paulson@3706
   465
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   466
  SUBGOAL
clasohm@0
   467
    (fn (prem,i) =>
clasohm@0
   468
      let val hyps = Logic.strip_assums_hyp prem
wenzelm@10817
   469
          and concl = Logic.strip_assums_concl prem
clasohm@0
   470
          val kbrls = Net.unify_term inet concl @
paulson@2672
   471
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   472
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   473
paulson@3706
   474
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   475
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   476
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   477
clasohm@0
   478
(*fast versions using nets internally*)
lcp@670
   479
val net_biresolve_tac =
lcp@670
   480
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   481
lcp@670
   482
val net_bimatch_tac =
lcp@670
   483
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   484
clasohm@0
   485
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   486
clasohm@0
   487
(*insert one tagged rl into the net*)
clasohm@0
   488
fun insert_krl (krl as (k,th), net) =
clasohm@0
   489
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   490
clasohm@0
   491
(*build a net of rules for resolution*)
wenzelm@10817
   492
fun build_net rls =
skalberg@15574
   493
    foldr insert_krl Net.empty (taglist 1 rls);
clasohm@0
   494
clasohm@0
   495
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   496
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   497
  SUBGOAL
clasohm@0
   498
    (fn (prem,i) =>
clasohm@0
   499
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
wenzelm@10817
   500
      in
wenzelm@10817
   501
         if pred krls
clasohm@0
   502
         then PRIMSEQ
wenzelm@10805
   503
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   504
         else no_tac
clasohm@0
   505
      end);
clasohm@0
   506
clasohm@0
   507
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   508
   which means more than maxr rules are unifiable.      *)
wenzelm@10817
   509
fun filt_resolve_tac rules maxr =
clasohm@0
   510
    let fun pred krls = length krls <= maxr
clasohm@0
   511
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   512
clasohm@0
   513
(*versions taking pre-built nets*)
clasohm@0
   514
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   515
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   516
clasohm@0
   517
(*fast versions using nets internally*)
clasohm@0
   518
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   519
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   520
clasohm@0
   521
clasohm@0
   522
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   523
clasohm@0
   524
(*The number of new subgoals produced by the brule*)
lcp@1077
   525
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   526
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   527
clasohm@0
   528
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   529
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   530
clasohm@0
   531
clasohm@0
   532
(*** Meta-Rewriting Tactics ***)
clasohm@0
   533
wenzelm@3575
   534
val simple_prover =
wenzelm@15021
   535
  SINGLE o (fn ss => ALLGOALS (resolve_tac (MetaSimplifier.prems_of_ss ss)));
wenzelm@3575
   536
wenzelm@11768
   537
val rewrite = MetaSimplifier.rewrite_aux simple_prover;
wenzelm@11768
   538
val simplify = MetaSimplifier.simplify_aux simple_prover;
wenzelm@11768
   539
val rewrite_rule = simplify true;
berghofe@10415
   540
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   541
wenzelm@10444
   542
fun rewrite_goal_tac rews =
wenzelm@15021
   543
  MetaSimplifier.asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@15021
   544
    (MetaSimplifier.empty_ss addsimps rews);
wenzelm@10444
   545
lcp@69
   546
(*Rewrite throughout proof state. *)
lcp@69
   547
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   548
clasohm@0
   549
(*Rewrite subgoals only, not main goal. *)
lcp@69
   550
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   551
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   552
ballarin@15696
   553
fun norm_hhf_plain th =
ballarin@15696
   554
  if Drule.is_norm_hhf (prop_of th) then th
ballarin@15696
   555
  else rewrite_rule [Drule.norm_hhf_eq] th;
ballarin@15696
   556
wenzelm@12801
   557
fun norm_hhf_rule th =
ballarin@15696
   558
  th |> norm_hhf_plain |> Drule.gen_all;
wenzelm@10817
   559
wenzelm@12782
   560
val norm_hhf_tac =
wenzelm@12782
   561
  rtac Drule.asm_rl  (*cheap approximation -- thanks to builtin Logic.flatten_params*)
wenzelm@12782
   562
  THEN' SUBGOAL (fn (t, i) =>
wenzelm@12801
   563
    if Drule.is_norm_hhf t then all_tac
wenzelm@12782
   564
    else rewrite_goal_tac [Drule.norm_hhf_eq] i);
wenzelm@10805
   565
clasohm@0
   566
paulson@1501
   567
(*** for folding definitions, handling critical pairs ***)
lcp@69
   568
lcp@69
   569
(*The depth of nesting in a term*)
lcp@69
   570
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   571
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   572
  | term_depth _ = 0;
lcp@69
   573
wenzelm@12801
   574
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
lcp@69
   575
lcp@69
   576
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   577
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   578
fun sort_lhs_depths defs =
lcp@69
   579
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
wenzelm@4438
   580
      val keys = distinct (sort (rev_order o int_ord) (map #2 keylist))
lcp@69
   581
  in  map (keyfilter keylist) keys  end;
lcp@69
   582
wenzelm@7596
   583
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   584
skalberg@15570
   585
fun fold_rule defs thm = Library.foldl (fn (th, ds) => rewrite_rule ds th) (thm, rev_defs defs);
wenzelm@7596
   586
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   587
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   588
lcp@69
   589
lcp@69
   590
(*** Renaming of parameters in a subgoal
lcp@69
   591
     Names may contain letters, digits or primes and must be
lcp@69
   592
     separated by blanks ***)
clasohm@0
   593
clasohm@0
   594
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   595
  it affects nothing but the names of bound variables!*)
wenzelm@9535
   596
fun rename_params_tac xs i =
wenzelm@14673
   597
  case Library.find_first (not o Syntax.is_identifier) xs of
skalberg@15531
   598
      SOME x => error ("Not an identifier: " ^ x)
wenzelm@16425
   599
    | NONE =>
paulson@13559
   600
       (if !Logic.auto_rename
wenzelm@16425
   601
         then (warning "Resetting Logic.auto_rename";
wenzelm@16425
   602
             Logic.auto_rename := false)
wenzelm@16425
   603
        else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   604
wenzelm@10817
   605
fun rename_tac str i =
wenzelm@10817
   606
  let val cs = Symbol.explode str in
wenzelm@4693
   607
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   608
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   609
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   610
  end;
clasohm@0
   611
paulson@1501
   612
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   613
  provided the string a, which represents a term, is an identifier. *)
wenzelm@10817
   614
fun rename_last_tac a sufs i =
clasohm@0
   615
  let val names = map (curry op^ a) sufs
clasohm@0
   616
  in  if Syntax.is_identifier a
clasohm@0
   617
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   618
      else all_tac
clasohm@0
   619
  end;
clasohm@0
   620
paulson@2043
   621
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   622
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   623
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   624
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   625
paulson@1501
   626
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   627
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   628
fun rotate_tac 0 i = all_tac
paulson@2672
   629
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   630
paulson@7248
   631
(*Rotates the given subgoal to be the last.*)
paulson@7248
   632
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   633
nipkow@5974
   634
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   635
fun filter_prems_tac p =
skalberg@15531
   636
  let fun Then NONE tac = SOME tac
skalberg@15531
   637
        | Then (SOME tac) tac' = SOME(tac THEN' tac');
nipkow@5974
   638
      fun thins ((tac,n),H) =
nipkow@5974
   639
        if p H then (tac,n+1)
nipkow@5974
   640
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   641
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   642
       let val Hs = Logic.strip_assums_hyp subg
skalberg@15570
   643
       in case fst(Library.foldl thins ((NONE,0),Hs)) of
skalberg@15531
   644
            NONE => no_tac | SOME tac => tac n
nipkow@5974
   645
       end)
nipkow@5974
   646
  end;
nipkow@5974
   647
wenzelm@11961
   648
wenzelm@12139
   649
(*meta-level conjunction*)
wenzelm@12139
   650
val conj_tac = SUBGOAL (fn (Const ("all", _) $ Abs (_, _, Const ("==>", _) $
wenzelm@12139
   651
      (Const ("==>", _) $ _ $ (Const ("==>", _) $ _ $ Bound 0)) $ Bound 0), i) =>
wenzelm@12139
   652
    (fn st =>
wenzelm@12139
   653
      compose_tac (false, Drule.incr_indexes_wrt [] [] [] [st] Drule.conj_intr_thm, 2) i st)
wenzelm@12139
   654
  | _ => no_tac);
wenzelm@16425
   655
wenzelm@12139
   656
val conjunction_tac = ALLGOALS (REPEAT_ALL_NEW conj_tac);
wenzelm@12139
   657
wenzelm@15874
   658
fun smart_conjunction_tac 0 = assume_tac 1
wenzelm@15874
   659
  | smart_conjunction_tac _ = TRY conjunction_tac;
wenzelm@15874
   660
wenzelm@12139
   661
wenzelm@12139
   662
wenzelm@15874
   663
(** minimal goal interface for programmed proofs *)
wenzelm@11961
   664
wenzelm@16425
   665
fun gen_prove_multi finish_thm thy xs asms props tac =
wenzelm@11961
   666
  let
wenzelm@15874
   667
    val prop = Logic.mk_conjunction_list props;
wenzelm@11961
   668
    val statement = Logic.list_implies (asms, prop);
wenzelm@11961
   669
    val frees = map Term.dest_Free (Term.term_frees statement);
wenzelm@11970
   670
    val fixed_frees = filter_out (fn (x, _) => x mem_string xs) frees;
berghofe@15797
   671
    val fixed_tfrees = foldr Term.add_typ_tfrees [] (map #2 fixed_frees);
skalberg@15570
   672
    val params = List.mapPartial (fn x => Option.map (pair x) (assoc_string (frees, x))) xs;
wenzelm@11961
   673
wenzelm@12212
   674
    fun err msg = raise ERROR_MESSAGE
wenzelm@12212
   675
      (msg ^ "\nThe error(s) above occurred for the goal statement:\n" ^
wenzelm@16425
   676
        Sign.string_of_term thy (Term.list_all_free (params, statement)));
wenzelm@11961
   677
wenzelm@16425
   678
    fun cert_safe t = Thm.cterm_of thy (Envir.beta_norm t)
wenzelm@11961
   679
      handle TERM (msg, _) => err msg | TYPE (msg, _, _) => err msg;
wenzelm@11961
   680
wenzelm@11961
   681
    val _ = cert_safe statement;
wenzelm@11974
   682
    val _ = Term.no_dummy_patterns statement handle TERM (msg, _) => err msg;
wenzelm@11961
   683
wenzelm@11974
   684
    val cparams = map (cert_safe o Free) params;
wenzelm@11961
   685
    val casms = map cert_safe asms;
wenzelm@12801
   686
    val prems = map (norm_hhf_rule o Thm.assume) casms;
wenzelm@11961
   687
    val goal = Drule.mk_triv_goal (cert_safe prop);
wenzelm@11961
   688
wenzelm@11961
   689
    val goal' =
skalberg@15531
   690
      (case Seq.pull (tac prems goal) of SOME (goal', _) => goal' | _ => err "Tactic failed.");
wenzelm@11961
   691
    val ngoals = Thm.nprems_of goal';
wenzelm@15874
   692
    val _ = conditional (ngoals <> 0) (fn () =>
wenzelm@15874
   693
      err ("Proof failed.\n" ^
wenzelm@15874
   694
        Pretty.string_of (Pretty.chunks (Display.pretty_goals ngoals goal')) ^
wenzelm@15874
   695
        ("\n" ^ string_of_int ngoals ^ " unsolved goal(s)!")));
wenzelm@15874
   696
wenzelm@11961
   697
    val raw_result = goal' RS Drule.rev_triv_goal;
wenzelm@12801
   698
    val prop' = prop_of raw_result;
wenzelm@16425
   699
    val _ = conditional (not (Pattern.matches (Sign.tsig_of thy) (prop, prop'))) (fn () =>
wenzelm@16425
   700
      err ("Proved a different theorem: " ^ Sign.string_of_term thy prop'));
wenzelm@11961
   701
  in
wenzelm@15874
   702
    Drule.conj_elim_precise (length props) raw_result
wenzelm@15874
   703
    |> map (fn res => res
wenzelm@11961
   704
      |> Drule.implies_intr_list casms
wenzelm@11974
   705
      |> Drule.forall_intr_list cparams
ballarin@16325
   706
      |> finish_thm fixed_tfrees)
wenzelm@11961
   707
  end;
wenzelm@11961
   708
wenzelm@16425
   709
fun prove_multi_plain thy xs asms prop tac =
wenzelm@16425
   710
  gen_prove_multi (K norm_hhf_plain) thy xs asms prop tac;
wenzelm@16425
   711
fun prove_multi thy xs asms prop tac =
ballarin@16325
   712
  gen_prove_multi (fn fixed_tfrees => Drule.zero_var_indexes o
ballarin@16325
   713
      (#1 o Thm.varifyT' fixed_tfrees) o norm_hhf_rule)
wenzelm@16425
   714
    thy xs asms prop tac;
wenzelm@16425
   715
fun prove_multi_standard thy xs asms prop tac =
wenzelm@16425
   716
  map Drule.standard (prove_multi thy xs asms prop tac);
wenzelm@15874
   717
wenzelm@16425
   718
fun prove_plain thy xs asms prop tac = hd (prove_multi_plain thy xs asms [prop] tac);
wenzelm@16425
   719
fun prove thy xs asms prop tac = hd (prove_multi thy xs asms [prop] tac);
wenzelm@16425
   720
fun prove_standard thy xs asms prop tac = Drule.standard (prove thy xs asms prop tac);
wenzelm@11970
   721
clasohm@0
   722
end;
paulson@1501
   723
wenzelm@11774
   724
structure BasicTactic: BASIC_TACTIC = Tactic;
wenzelm@11774
   725
open BasicTactic;