src/HOL/Library/Tree.thy
author blanchet
Wed Sep 24 15:45:55 2014 +0200 (2014-09-24)
changeset 58425 246985c6b20b
parent 58424 cbbba613b6ab
child 58438 566117a31cc0
permissions -rw-r--r--
simpler proof
nipkow@57250
     1
(* Author: Tobias Nipkow *)
nipkow@57250
     2
nipkow@57250
     3
header {* Binary Tree *}
nipkow@57250
     4
nipkow@57250
     5
theory Tree
nipkow@57250
     6
imports Main
nipkow@57250
     7
begin
nipkow@57250
     8
nipkow@58424
     9
datatype 'a tree =
nipkow@58424
    10
  Leaf ("\<langle>\<rangle>") |
nipkow@58424
    11
  Node (left: "'a tree") (val: 'a) (right: "'a tree") ("\<langle>_, _, _\<rangle>")
hoelzl@57449
    12
  where
hoelzl@57449
    13
    "left Leaf = Leaf"
hoelzl@57449
    14
  | "right Leaf = Leaf"
hoelzl@57569
    15
datatype_compat tree
nipkow@57250
    16
nipkow@58424
    17
lemma neq_Leaf_iff: "(t \<noteq> \<langle>\<rangle>) = (\<exists>l a r. t = \<langle>l, a, r\<rangle>)"
nipkow@58424
    18
by (cases t) auto
nipkow@57530
    19
nipkow@57687
    20
lemma finite_set_tree[simp]: "finite(set_tree t)"
nipkow@57687
    21
by(induction t) auto
nipkow@57687
    22
nipkow@57687
    23
nipkow@57687
    24
subsection "The set of subtrees"
nipkow@57687
    25
nipkow@57250
    26
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where
nipkow@58424
    27
  "subtrees \<langle>\<rangle> = {\<langle>\<rangle>}" |
nipkow@58424
    28
  "subtrees (\<langle>l, a, r\<rangle>) = insert \<langle>l, a, r\<rangle> (subtrees l \<union> subtrees r)"
nipkow@57250
    29
nipkow@58424
    30
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. \<langle>l, a, r\<rangle> \<in> subtrees t"
nipkow@58424
    31
by (induction t)(auto)
hoelzl@57449
    32
hoelzl@57450
    33
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t"
nipkow@58424
    34
by (induction t) auto
hoelzl@57449
    35
nipkow@58424
    36
lemma in_set_tree_if: "\<langle>l, a, r\<rangle> \<in> subtrees t \<Longrightarrow> a \<in> set_tree t"
nipkow@58424
    37
by (metis Node_notin_subtrees_if)
hoelzl@57449
    38
nipkow@57687
    39
nipkow@57687
    40
subsection "Inorder list of entries"
nipkow@57687
    41
nipkow@57250
    42
fun inorder :: "'a tree \<Rightarrow> 'a list" where
nipkow@58424
    43
"inorder \<langle>\<rangle> = []" |
nipkow@58424
    44
"inorder \<langle>l, x, r\<rangle> = inorder l @ [x] @ inorder r"
nipkow@57250
    45
hoelzl@57449
    46
lemma set_inorder[simp]: "set (inorder t) = set_tree t"
nipkow@58424
    47
by (induction t) auto
nipkow@57250
    48
nipkow@57687
    49
hoelzl@57449
    50
subsection {* Binary Search Tree predicate *}
nipkow@57250
    51
hoelzl@57450
    52
fun (in linorder) bst :: "'a tree \<Rightarrow> bool" where
nipkow@58424
    53
"bst \<langle>\<rangle> \<longleftrightarrow> True" |
nipkow@58424
    54
"bst \<langle>l, a, r\<rangle> \<longleftrightarrow> bst l \<and> bst r \<and> (\<forall>x\<in>set_tree l. x < a) \<and> (\<forall>x\<in>set_tree r. a < x)"
nipkow@57250
    55
hoelzl@57450
    56
lemma (in linorder) bst_imp_sorted: "bst t \<Longrightarrow> sorted (inorder t)"
nipkow@58424
    57
by (induction t) (auto simp: sorted_append sorted_Cons intro: less_imp_le less_trans)
nipkow@57250
    58
nipkow@57687
    59
nipkow@57687
    60
subsection "Deletion of the rightmost entry"
nipkow@57687
    61
nipkow@57687
    62
fun del_rightmost :: "'a tree \<Rightarrow> 'a tree * 'a" where
nipkow@58424
    63
"del_rightmost \<langle>l, a, \<langle>\<rangle>\<rangle> = (l,a)" |
nipkow@58424
    64
"del_rightmost \<langle>l, a, r\<rangle> = (let (r',x) = del_rightmost r in (\<langle>l, a, r'\<rangle>, x))"
nipkow@57687
    65
nipkow@57687
    66
lemma del_rightmost_set_tree_if_bst:
nipkow@57687
    67
  "\<lbrakk> del_rightmost t = (t',x); bst t; t \<noteq> Leaf \<rbrakk>
nipkow@57687
    68
  \<Longrightarrow> x \<in> set_tree t \<and> set_tree t' = set_tree t - {x}"
nipkow@57687
    69
apply(induction t arbitrary: t' rule: del_rightmost.induct)
nipkow@57687
    70
  apply (fastforce simp: ball_Un split: prod.splits)+
nipkow@57687
    71
done
nipkow@57687
    72
nipkow@57687
    73
lemma del_rightmost_set_tree:
nipkow@58424
    74
  "\<lbrakk> del_rightmost t = (t',x);  t \<noteq> \<langle>\<rangle> \<rbrakk> \<Longrightarrow> set_tree t = insert x (set_tree t')"
nipkow@57687
    75
apply(induction t arbitrary: t' rule: del_rightmost.induct)
nipkow@57687
    76
by (auto split: prod.splits) auto
nipkow@57687
    77
nipkow@57687
    78
lemma del_rightmost_bst:
nipkow@58424
    79
  "\<lbrakk> del_rightmost t = (t',x);  bst t;  t \<noteq> \<langle>\<rangle> \<rbrakk> \<Longrightarrow> bst t'"
nipkow@57687
    80
proof(induction t arbitrary: t' rule: del_rightmost.induct)
nipkow@57687
    81
  case (2 l a rl b rr)
nipkow@57687
    82
  let ?r = "Node rl b rr"
nipkow@57687
    83
  from "2.prems"(1) obtain r' where 1: "del_rightmost ?r = (r',x)" and [simp]: "t' = Node l a r'"
nipkow@57687
    84
    by(simp split: prod.splits)
nipkow@57687
    85
  from "2.prems"(2) 1 del_rightmost_set_tree[OF 1] show ?case by(auto)(simp add: "2.IH")
nipkow@57687
    86
qed auto
nipkow@57687
    87
nipkow@57687
    88
nipkow@58424
    89
lemma del_rightmost_greater: "\<lbrakk> del_rightmost t = (t',x);  bst t;  t \<noteq> \<langle>\<rangle> \<rbrakk>
nipkow@57687
    90
  \<Longrightarrow> \<forall>a\<in>set_tree t'. a < x"
nipkow@57687
    91
proof(induction t arbitrary: t' rule: del_rightmost.induct)
nipkow@57687
    92
  case (2 l a rl b rr)
nipkow@57687
    93
  from "2.prems"(1) obtain r'
nipkow@57687
    94
  where dm: "del_rightmost (Node rl b rr) = (r',x)" and [simp]: "t' = Node l a r'"
nipkow@57687
    95
    by(simp split: prod.splits)
nipkow@57687
    96
  show ?case using "2.prems"(2) "2.IH"[OF dm] del_rightmost_set_tree_if_bst[OF dm]
nipkow@57687
    97
    by (fastforce simp add: ball_Un)
nipkow@57687
    98
qed simp_all
nipkow@57687
    99
nipkow@57687
   100
(* should be moved but metis not available in much of Main *)
nipkow@57687
   101
lemma Max_insert1: "\<lbrakk> finite A;  \<forall>a\<in>A. a \<le> x \<rbrakk> \<Longrightarrow> Max(insert x A) = x"
nipkow@57687
   102
by (metis Max_in Max_insert Max_singleton antisym max_def)
nipkow@57687
   103
nipkow@57687
   104
lemma del_rightmost_Max:
nipkow@58424
   105
  "\<lbrakk> del_rightmost t = (t',x);  bst t;  t \<noteq> \<langle>\<rangle> \<rbrakk> \<Longrightarrow> x = Max(set_tree t)"
nipkow@57687
   106
by (metis Max_insert1 del_rightmost_greater del_rightmost_set_tree finite_set_tree less_le_not_le)
nipkow@57687
   107
nipkow@57250
   108
end