src/HOL/Conditionally_Complete_Lattices.thy
author hoelzl
Tue, 27 Jan 2015 16:12:40 +0100
changeset 59452 2538b2c51769
parent 58889 5b7a9633cfa8
child 60172 423273355b55
permissions -rw-r--r--
ereal: tuned proofs concerning continuity and suprema
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51775
diff changeset
     1
(*  Title:      HOL/Conditionally_Complete_Lattices.thy
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
     2
    Author:     Amine Chaieb and L C Paulson, University of Cambridge
51643
b6675f4549d8 fixed spelling
hoelzl
parents: 51518
diff changeset
     3
    Author:     Johannes Hölzl, TU München
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
     4
    Author:     Luke S. Serafin, Carnegie Mellon University
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
     5
*)
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
     6
58889
5b7a9633cfa8 modernized header uniformly as section;
wenzelm
parents: 57447
diff changeset
     7
section {* Conditionally-complete Lattices *}
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
     8
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
     9
theory Conditionally_Complete_Lattices
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    10
imports Main
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
    11
begin
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
    12
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
    13
lemma (in linorder) Sup_fin_eq_Max: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup_fin X = Max X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    14
  by (induct X rule: finite_ne_induct) (simp_all add: sup_max)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    15
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
    16
lemma (in linorder) Inf_fin_eq_Min: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf_fin X = Min X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    17
  by (induct X rule: finite_ne_induct) (simp_all add: inf_min)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    18
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    19
context preorder
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    20
begin
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    21
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    22
definition "bdd_above A \<longleftrightarrow> (\<exists>M. \<forall>x \<in> A. x \<le> M)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    23
definition "bdd_below A \<longleftrightarrow> (\<exists>m. \<forall>x \<in> A. m \<le> x)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    24
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    25
lemma bdd_aboveI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> M) \<Longrightarrow> bdd_above A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    26
  by (auto simp: bdd_above_def)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    27
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    28
lemma bdd_belowI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> x) \<Longrightarrow> bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    29
  by (auto simp: bdd_below_def)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    30
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    31
lemma bdd_aboveI2: "(\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> bdd_above (f`A)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    32
  by force
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    33
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    34
lemma bdd_belowI2: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> bdd_below (f`A)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    35
  by force
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
    36
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    37
lemma bdd_above_empty [simp, intro]: "bdd_above {}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    38
  unfolding bdd_above_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    39
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    40
lemma bdd_below_empty [simp, intro]: "bdd_below {}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    41
  unfolding bdd_below_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    42
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    43
lemma bdd_above_mono: "bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_above A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    44
  by (metis (full_types) bdd_above_def order_class.le_neq_trans psubsetD)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    45
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    46
lemma bdd_below_mono: "bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    47
  by (metis bdd_below_def order_class.le_neq_trans psubsetD)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    48
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    49
lemma bdd_above_Int1 [simp]: "bdd_above A \<Longrightarrow> bdd_above (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    50
  using bdd_above_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    51
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    52
lemma bdd_above_Int2 [simp]: "bdd_above B \<Longrightarrow> bdd_above (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    53
  using bdd_above_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    54
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    55
lemma bdd_below_Int1 [simp]: "bdd_below A \<Longrightarrow> bdd_below (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    56
  using bdd_below_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    57
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    58
lemma bdd_below_Int2 [simp]: "bdd_below B \<Longrightarrow> bdd_below (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    59
  using bdd_below_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    60
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    61
lemma bdd_above_Ioo [simp, intro]: "bdd_above {a <..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    62
  by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    63
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    64
lemma bdd_above_Ico [simp, intro]: "bdd_above {a ..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    65
  by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    66
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    67
lemma bdd_above_Iio [simp, intro]: "bdd_above {..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    68
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    69
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    70
lemma bdd_above_Ioc [simp, intro]: "bdd_above {a <.. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    71
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    72
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    73
lemma bdd_above_Icc [simp, intro]: "bdd_above {a .. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    74
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    75
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    76
lemma bdd_above_Iic [simp, intro]: "bdd_above {.. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    77
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    78
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    79
lemma bdd_below_Ioo [simp, intro]: "bdd_below {a <..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    80
  by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    81
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    82
lemma bdd_below_Ioc [simp, intro]: "bdd_below {a <.. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    83
  by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    84
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    85
lemma bdd_below_Ioi [simp, intro]: "bdd_below {a <..}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    86
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    87
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    88
lemma bdd_below_Ico [simp, intro]: "bdd_below {a ..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    89
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    90
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    91
lemma bdd_below_Icc [simp, intro]: "bdd_below {a .. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    92
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    93
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    94
lemma bdd_below_Ici [simp, intro]: "bdd_below {a ..}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    95
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    96
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    97
end
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    98
54261
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
    99
lemma (in order_top) bdd_above_top[simp, intro!]: "bdd_above A"
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   100
  by (rule bdd_aboveI[of _ top]) simp
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   101
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   102
lemma (in order_bot) bdd_above_bot[simp, intro!]: "bdd_below A"
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   103
  by (rule bdd_belowI[of _ bot]) simp
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   104
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   105
lemma bdd_above_image_mono: "mono f \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_above (f`A)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   106
  by (auto simp: bdd_above_def mono_def)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   107
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   108
lemma bdd_below_image_mono: "mono f \<Longrightarrow> bdd_below A \<Longrightarrow> bdd_below (f`A)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   109
  by (auto simp: bdd_below_def mono_def)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   110
  
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   111
lemma bdd_above_image_antimono: "antimono f \<Longrightarrow> bdd_below A \<Longrightarrow> bdd_above (f`A)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   112
  by (auto simp: bdd_above_def bdd_below_def antimono_def)
54262
326fd7103cb4 generalize bdd_above/below_uminus to ordered_ab_group_add
hoelzl
parents: 54261
diff changeset
   113
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   114
lemma bdd_below_image_antimono: "antimono f \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_below (f`A)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   115
  by (auto simp: bdd_above_def bdd_below_def antimono_def)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   116
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   117
lemma
54262
326fd7103cb4 generalize bdd_above/below_uminus to ordered_ab_group_add
hoelzl
parents: 54261
diff changeset
   118
  fixes X :: "'a::ordered_ab_group_add set"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   119
  shows bdd_above_uminus[simp]: "bdd_above (uminus ` X) \<longleftrightarrow> bdd_below X"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   120
    and bdd_below_uminus[simp]: "bdd_below (uminus ` X) \<longleftrightarrow> bdd_above X"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   121
  using bdd_above_image_antimono[of uminus X] bdd_below_image_antimono[of uminus "uminus`X"]
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   122
  using bdd_below_image_antimono[of uminus X] bdd_above_image_antimono[of uminus "uminus`X"]
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 58889
diff changeset
   123
  by (auto simp: antimono_def image_image)
54262
326fd7103cb4 generalize bdd_above/below_uminus to ordered_ab_group_add
hoelzl
parents: 54261
diff changeset
   124
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   125
context lattice
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   126
begin
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   127
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   128
lemma bdd_above_insert [simp]: "bdd_above (insert a A) = bdd_above A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   129
  by (auto simp: bdd_above_def intro: le_supI2 sup_ge1)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   130
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   131
lemma bdd_below_insert [simp]: "bdd_below (insert a A) = bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   132
  by (auto simp: bdd_below_def intro: le_infI2 inf_le1)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   133
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   134
lemma bdd_finite [simp]:
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   135
  assumes "finite A" shows bdd_above_finite: "bdd_above A" and bdd_below_finite: "bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   136
  using assms by (induct rule: finite_induct, auto)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   137
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   138
lemma bdd_above_Un [simp]: "bdd_above (A \<union> B) = (bdd_above A \<and> bdd_above B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   139
proof
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   140
  assume "bdd_above (A \<union> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   141
  thus "bdd_above A \<and> bdd_above B" unfolding bdd_above_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   142
next
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   143
  assume "bdd_above A \<and> bdd_above B"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   144
  then obtain a b where "\<forall>x\<in>A. x \<le> a" "\<forall>x\<in>B. x \<le> b" unfolding bdd_above_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   145
  hence "\<forall>x \<in> A \<union> B. x \<le> sup a b" by (auto intro: Un_iff le_supI1 le_supI2)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   146
  thus "bdd_above (A \<union> B)" unfolding bdd_above_def ..
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   147
qed
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   148
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   149
lemma bdd_below_Un [simp]: "bdd_below (A \<union> B) = (bdd_below A \<and> bdd_below B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   150
proof
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   151
  assume "bdd_below (A \<union> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   152
  thus "bdd_below A \<and> bdd_below B" unfolding bdd_below_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   153
next
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   154
  assume "bdd_below A \<and> bdd_below B"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   155
  then obtain a b where "\<forall>x\<in>A. a \<le> x" "\<forall>x\<in>B. b \<le> x" unfolding bdd_below_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   156
  hence "\<forall>x \<in> A \<union> B. inf a b \<le> x" by (auto intro: Un_iff le_infI1 le_infI2)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   157
  thus "bdd_below (A \<union> B)" unfolding bdd_below_def ..
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   158
qed
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   159
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   160
lemma bdd_above_sup[simp]: "bdd_above ((\<lambda>x. sup (f x) (g x)) ` A) \<longleftrightarrow> bdd_above (f`A) \<and> bdd_above (g`A)"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   161
  by (auto simp: bdd_above_def intro: le_supI1 le_supI2)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   162
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   163
lemma bdd_below_inf[simp]: "bdd_below ((\<lambda>x. inf (f x) (g x)) ` A) \<longleftrightarrow> bdd_below (f`A) \<and> bdd_below (g`A)"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   164
  by (auto simp: bdd_below_def intro: le_infI1 le_infI2)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   165
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   166
end
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   167
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   168
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   169
text {*
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   170
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   171
To avoid name classes with the @{class complete_lattice}-class we prefix @{const Sup} and
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   172
@{const Inf} in theorem names with c.
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   173
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   174
*}
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   175
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   176
class conditionally_complete_lattice = lattice + Sup + Inf +
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   177
  assumes cInf_lower: "x \<in> X \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   178
    and cInf_greatest: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   179
  assumes cSup_upper: "x \<in> X \<Longrightarrow> bdd_above X \<Longrightarrow> x \<le> Sup X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   180
    and cSup_least: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z"
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   181
begin
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   182
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   183
lemma cSup_upper2: "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> bdd_above X \<Longrightarrow> y \<le> Sup X"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   184
  by (metis cSup_upper order_trans)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   185
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   186
lemma cInf_lower2: "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> y"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   187
  by (metis cInf_lower order_trans)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   188
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   189
lemma cSup_mono: "B \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. b \<le> a) \<Longrightarrow> Sup B \<le> Sup A"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   190
  by (metis cSup_least cSup_upper2)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   191
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   192
lemma cInf_mono: "B \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<le> b) \<Longrightarrow> Inf A \<le> Inf B"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   193
  by (metis cInf_greatest cInf_lower2)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   194
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   195
lemma cSup_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> Sup A \<le> Sup B"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   196
  by (metis cSup_least cSup_upper subsetD)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   197
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   198
lemma cInf_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> Inf B \<le> Inf A"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   199
  by (metis cInf_greatest cInf_lower subsetD)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   200
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   201
lemma cSup_eq_maximum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X = z"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   202
  by (intro antisym cSup_upper[of z X] cSup_least[of X z]) auto
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   203
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   204
lemma cInf_eq_minimum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X = z"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   205
  by (intro antisym cInf_lower[of z X] cInf_greatest[of X z]) auto
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   206
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   207
lemma cSup_le_iff: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S \<le> a \<longleftrightarrow> (\<forall>x\<in>S. x \<le> a)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   208
  by (metis order_trans cSup_upper cSup_least)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   209
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   210
lemma le_cInf_iff: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall>x\<in>S. a \<le> x)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   211
  by (metis order_trans cInf_lower cInf_greatest)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   212
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   213
lemma cSup_eq_non_empty:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   214
  assumes 1: "X \<noteq> {}"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   215
  assumes 2: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   216
  assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   217
  shows "Sup X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   218
  by (intro 3 1 antisym cSup_least) (auto intro: 2 1 cSup_upper)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   219
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   220
lemma cInf_eq_non_empty:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   221
  assumes 1: "X \<noteq> {}"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   222
  assumes 2: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   223
  assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   224
  shows "Inf X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   225
  by (intro 3 1 antisym cInf_greatest) (auto intro: 2 1 cInf_lower)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   226
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   227
lemma cInf_cSup: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> Inf S = Sup {x. \<forall>s\<in>S. x \<le> s}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   228
  by (rule cInf_eq_non_empty) (auto intro!: cSup_upper cSup_least simp: bdd_below_def)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   229
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   230
lemma cSup_cInf: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S = Inf {x. \<forall>s\<in>S. s \<le> x}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   231
  by (rule cSup_eq_non_empty) (auto intro!: cInf_lower cInf_greatest simp: bdd_above_def)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   232
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   233
lemma cSup_insert: "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> Sup (insert a X) = sup a (Sup X)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   234
  by (intro cSup_eq_non_empty) (auto intro: le_supI2 cSup_upper cSup_least)
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   235
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   236
lemma cInf_insert: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf (insert a X) = inf a (Inf X)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   237
  by (intro cInf_eq_non_empty) (auto intro: le_infI2 cInf_lower cInf_greatest)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   238
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   239
lemma cSup_singleton [simp]: "Sup {x} = x"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   240
  by (intro cSup_eq_maximum) auto
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   241
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   242
lemma cInf_singleton [simp]: "Inf {x} = x"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   243
  by (intro cInf_eq_minimum) auto
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   244
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   245
lemma cSup_insert_If:  "bdd_above X \<Longrightarrow> Sup (insert a X) = (if X = {} then a else sup a (Sup X))"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   246
  using cSup_insert[of X] by simp
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   247
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   248
lemma cInf_insert_If: "bdd_below X \<Longrightarrow> Inf (insert a X) = (if X = {} then a else inf a (Inf X))"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   249
  using cInf_insert[of X] by simp
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   250
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   251
lemma le_cSup_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> x \<le> Sup X"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   252
proof (induct X arbitrary: x rule: finite_induct)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   253
  case (insert x X y) then show ?case
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   254
    by (cases "X = {}") (auto simp: cSup_insert intro: le_supI2)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   255
qed simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   256
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   257
lemma cInf_le_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> Inf X \<le> x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   258
proof (induct X arbitrary: x rule: finite_induct)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   259
  case (insert x X y) then show ?case
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   260
    by (cases "X = {}") (auto simp: cInf_insert intro: le_infI2)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   261
qed simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   262
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   263
lemma cSup_eq_Sup_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Sup_fin X"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   264
  by (induct X rule: finite_ne_induct) (simp_all add: cSup_insert)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   265
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   266
lemma cInf_eq_Inf_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Inf_fin X"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   267
  by (induct X rule: finite_ne_induct) (simp_all add: cInf_insert)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   268
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   269
lemma cSup_atMost[simp]: "Sup {..x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   270
  by (auto intro!: cSup_eq_maximum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   271
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   272
lemma cSup_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Sup {y<..x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   273
  by (auto intro!: cSup_eq_maximum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   274
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   275
lemma cSup_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Sup {y..x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   276
  by (auto intro!: cSup_eq_maximum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   277
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   278
lemma cInf_atLeast[simp]: "Inf {x..} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   279
  by (auto intro!: cInf_eq_minimum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   280
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   281
lemma cInf_atLeastLessThan[simp]: "y < x \<Longrightarrow> Inf {y..<x} = y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   282
  by (auto intro!: cInf_eq_minimum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   283
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   284
lemma cInf_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Inf {y..x} = y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   285
  by (auto intro!: cInf_eq_minimum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   286
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   287
lemma cINF_lower: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> INFIMUM A f \<le> f x"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   288
  using cInf_lower [of _ "f ` A"] by simp
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   289
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   290
lemma cINF_greatest: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> m \<le> INFIMUM A f"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   291
  using cInf_greatest [of "f ` A"] by auto
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   292
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   293
lemma cSUP_upper: "x \<in> A \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> f x \<le> SUPREMUM A f"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   294
  using cSup_upper [of _ "f ` A"] by simp
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   295
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   296
lemma cSUP_least: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> SUPREMUM A f \<le> M"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   297
  using cSup_least [of "f ` A"] by auto
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   298
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   299
lemma cINF_lower2: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<le> u \<Longrightarrow> INFIMUM A f \<le> u"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   300
  by (auto intro: cINF_lower assms order_trans)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   301
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   302
lemma cSUP_upper2: "bdd_above (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> u \<le> f x \<Longrightarrow> u \<le> SUPREMUM A f"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   303
  by (auto intro: cSUP_upper assms order_trans)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   304
54261
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   305
lemma cSUP_const: "A \<noteq> {} \<Longrightarrow> (SUP x:A. c) = c"
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   306
  by (intro antisym cSUP_least) (auto intro: cSUP_upper)
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   307
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   308
lemma cINF_const: "A \<noteq> {} \<Longrightarrow> (INF x:A. c) = c"
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   309
  by (intro antisym cINF_greatest) (auto intro: cINF_lower)
89991ef58448 restrict Limsup and Liminf to complete lattices
hoelzl
parents: 54259
diff changeset
   310
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   311
lemma le_cINF_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> u \<le> INFIMUM A f \<longleftrightarrow> (\<forall>x\<in>A. u \<le> f x)"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   312
  by (metis cINF_greatest cINF_lower assms order_trans)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   313
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   314
lemma cSUP_le_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM A f \<le> u \<longleftrightarrow> (\<forall>x\<in>A. f x \<le> u)"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   315
  by (metis cSUP_least cSUP_upper assms order_trans)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   316
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   317
lemma less_cINF_D: "bdd_below (f`A) \<Longrightarrow> y < (INF i:A. f i) \<Longrightarrow> i \<in> A \<Longrightarrow> y < f i"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   318
  by (metis cINF_lower less_le_trans)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   319
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   320
lemma cSUP_lessD: "bdd_above (f`A) \<Longrightarrow> (SUP i:A. f i) < y \<Longrightarrow> i \<in> A \<Longrightarrow> f i < y"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   321
  by (metis cSUP_upper le_less_trans)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   322
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   323
lemma cINF_insert: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> INFIMUM (insert a A) f = inf (f a) (INFIMUM A f)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   324
  by (metis cInf_insert Inf_image_eq image_insert image_is_empty)
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   325
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   326
lemma cSUP_insert: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM (insert a A) f = sup (f a) (SUPREMUM A f)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   327
  by (metis cSup_insert Sup_image_eq image_insert image_is_empty)
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   328
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   329
lemma cINF_mono: "B \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> (\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> INFIMUM A f \<le> INFIMUM B g"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   330
  using cInf_mono [of "g ` B" "f ` A"] by auto
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   331
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   332
lemma cSUP_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> (\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   333
  using cSup_mono [of "f ` A" "g ` B"] by auto
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   334
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   335
lemma cINF_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> g x \<le> f x) \<Longrightarrow> INFIMUM B g \<le> INFIMUM A f"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   336
  by (rule cINF_mono) auto
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   337
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   338
lemma cSUP_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   339
  by (rule cSUP_mono) auto
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   340
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   341
lemma less_eq_cInf_inter: "bdd_below A \<Longrightarrow> bdd_below B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> inf (Inf A) (Inf B) \<le> Inf (A \<inter> B)"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   342
  by (metis cInf_superset_mono lattice_class.inf_sup_ord(1) le_infI1)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   343
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   344
lemma cSup_inter_less_eq: "bdd_above A \<Longrightarrow> bdd_above B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> Sup (A \<inter> B) \<le> sup (Sup A) (Sup B) "
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   345
  by (metis cSup_subset_mono lattice_class.inf_sup_ord(1) le_supI1)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   346
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   347
lemma cInf_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> Inf (A \<union> B) = inf (Inf A) (Inf B)"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   348
  by (intro antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   349
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   350
lemma cINF_union: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below (f`B) \<Longrightarrow> INFIMUM (A \<union> B) f = inf (INFIMUM A f) (INFIMUM B f)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   351
  using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric])
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   352
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   353
lemma cSup_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> Sup (A \<union> B) = sup (Sup A) (Sup B)"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   354
  by (intro antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   355
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   356
lemma cSUP_union: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above (f`B) \<Longrightarrow> SUPREMUM (A \<union> B) f = sup (SUPREMUM A f) (SUPREMUM B f)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   357
  using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric])
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   358
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   359
lemma cINF_inf_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> bdd_below (g`A) \<Longrightarrow> inf (INFIMUM A f) (INFIMUM A g) = (INF a:A. inf (f a) (g a))"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   360
  by (intro antisym le_infI cINF_greatest cINF_lower2)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   361
     (auto intro: le_infI1 le_infI2 cINF_greatest cINF_lower le_infI)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   362
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56166
diff changeset
   363
lemma SUP_sup_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> bdd_above (g`A) \<Longrightarrow> sup (SUPREMUM A f) (SUPREMUM A g) = (SUP a:A. sup (f a) (g a))"
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   364
  by (intro antisym le_supI cSUP_least cSUP_upper2)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   365
     (auto intro: le_supI1 le_supI2 cSUP_least cSUP_upper le_supI)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   366
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   367
lemma cInf_le_cSup:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   368
  "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> bdd_below A \<Longrightarrow> Inf A \<le> Sup A"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   369
  by (auto intro!: cSup_upper2[of "SOME a. a \<in> A"] intro: someI cInf_lower)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   370
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   371
end
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   372
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   373
instance complete_lattice \<subseteq> conditionally_complete_lattice
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   374
  by default (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   375
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   376
lemma cSup_eq:
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   377
  fixes a :: "'a :: {conditionally_complete_lattice, no_bot}"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   378
  assumes upper: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   379
  assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   380
  shows "Sup X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   381
proof cases
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   382
  assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   383
qed (intro cSup_eq_non_empty assms)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   384
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   385
lemma cInf_eq:
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   386
  fixes a :: "'a :: {conditionally_complete_lattice, no_top}"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   387
  assumes upper: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   388
  assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   389
  shows "Inf X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   390
proof cases
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   391
  assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   392
qed (intro cInf_eq_non_empty assms)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   393
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   394
class conditionally_complete_linorder = conditionally_complete_lattice + linorder
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   395
begin
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   396
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   397
lemma less_cSup_iff : (*REAL_SUP_LE in HOL4*)
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   398
  "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> y < Sup X \<longleftrightarrow> (\<exists>x\<in>X. y < x)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   399
  by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   400
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   401
lemma cInf_less_iff: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X < y \<longleftrightarrow> (\<exists>x\<in>X. x < y)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   402
  by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   403
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   404
lemma cINF_less_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> (INF i:A. f i) < a \<longleftrightarrow> (\<exists>x\<in>A. f x < a)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   405
  using cInf_less_iff[of "f`A"] by auto
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   406
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   407
lemma less_cSUP_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> a < (SUP i:A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a < f x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 54281
diff changeset
   408
  using less_cSup_iff[of "f`A"] by auto
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54262
diff changeset
   409
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   410
lemma less_cSupE:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   411
  assumes "y < Sup X" "X \<noteq> {}" obtains x where "x \<in> X" "y < x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   412
  by (metis cSup_least assms not_le that)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   413
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   414
lemma less_cSupD:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   415
  "X \<noteq> {} \<Longrightarrow> z < Sup X \<Longrightarrow> \<exists>x\<in>X. z < x"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   416
  by (metis less_cSup_iff not_leE bdd_above_def)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   417
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   418
lemma cInf_lessD:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   419
  "X \<noteq> {} \<Longrightarrow> Inf X < z \<Longrightarrow> \<exists>x\<in>X. x < z"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   420
  by (metis cInf_less_iff not_leE bdd_below_def)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   421
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   422
lemma complete_interval:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   423
  assumes "a < b" and "P a" and "\<not> P b"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   424
  shows "\<exists>c. a \<le> c \<and> c \<le> b \<and> (\<forall>x. a \<le> x \<and> x < c \<longrightarrow> P x) \<and>
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   425
             (\<forall>d. (\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x) \<longrightarrow> d \<le> c)"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   426
proof (rule exI [where x = "Sup {d. \<forall>x. a \<le> x & x < d --> P x}"], auto)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   427
  show "a \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   428
    by (rule cSup_upper, auto simp: bdd_above_def)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   429
       (metis `a < b` `\<not> P b` linear less_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   430
next
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   431
  show "Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c} \<le> b"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   432
    apply (rule cSup_least) 
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   433
    apply auto
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   434
    apply (metis less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   435
    apply (metis `a<b` `~ P b` linear less_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   436
    done
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   437
next
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   438
  fix x
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   439
  assume x: "a \<le> x" and lt: "x < Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   440
  show "P x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   441
    apply (rule less_cSupE [OF lt], auto)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   442
    apply (metis less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   443
    apply (metis x) 
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   444
    done
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   445
next
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   446
  fix d
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   447
    assume 0: "\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   448
    thus "d \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   449
      by (rule_tac cSup_upper, auto simp: bdd_above_def)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   450
         (metis `a<b` `~ P b` linear less_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   451
qed
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   452
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   453
end
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   454
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   455
lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Max X"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   456
  using cSup_eq_Sup_fin[of X] Sup_fin_eq_Max[of X] by simp
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   457
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   458
lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Min X"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   459
  using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   460
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   461
lemma cSup_lessThan[simp]: "Sup {..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   462
  by (auto intro!: cSup_eq_non_empty intro: dense_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   463
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   464
lemma cSup_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Sup {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   465
  by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   466
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   467
lemma cSup_atLeastLessThan[simp]: "y < x \<Longrightarrow> Sup {y..<x::'a::{conditionally_complete_linorder, dense_linorder}} = x"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   468
  by (auto intro!: cSup_eq_non_empty intro: dense_le_bounded)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   469
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   470
lemma cInf_greaterThan[simp]: "Inf {x::'a::{conditionally_complete_linorder, no_top, dense_linorder} <..} = x"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   471
  by (auto intro!: cInf_eq_non_empty intro: dense_ge)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   472
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   473
lemma cInf_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   474
  by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   475
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   476
lemma cInf_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Inf {y<..<x::'a::{conditionally_complete_linorder, dense_linorder}} = y"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   477
  by (auto intro!: cInf_eq_non_empty intro: dense_ge_bounded)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   478
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   479
class linear_continuum = conditionally_complete_linorder + dense_linorder +
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   480
  assumes UNIV_not_singleton: "\<exists>a b::'a. a \<noteq> b"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   481
begin
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   482
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   483
lemma ex_gt_or_lt: "\<exists>b. a < b \<or> b < a"
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   484
  by (metis UNIV_not_singleton neq_iff)
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   485
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   486
end
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   487
54281
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   488
instantiation nat :: conditionally_complete_linorder
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   489
begin
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   490
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   491
definition "Sup (X::nat set) = Max X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   492
definition "Inf (X::nat set) = (LEAST n. n \<in> X)"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   493
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   494
lemma bdd_above_nat: "bdd_above X \<longleftrightarrow> finite (X::nat set)"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   495
proof
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   496
  assume "bdd_above X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   497
  then obtain z where "X \<subseteq> {.. z}"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   498
    by (auto simp: bdd_above_def)
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   499
  then show "finite X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   500
    by (rule finite_subset) simp
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   501
qed simp
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   502
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   503
instance
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   504
proof
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   505
  fix x :: nat and X :: "nat set"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   506
  { assume "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   507
      by (simp add: Inf_nat_def Least_le) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   508
  { assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> x \<le> y" then show "x \<le> Inf X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   509
      unfolding Inf_nat_def ex_in_conv[symmetric] by (rule LeastI2_ex) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   510
  { assume "x \<in> X" "bdd_above X" then show "x \<le> Sup X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   511
      by (simp add: Sup_nat_def bdd_above_nat) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   512
  { assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> y \<le> x" 
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   513
    moreover then have "bdd_above X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   514
      by (auto simp: bdd_above_def)
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   515
    ultimately show "Sup X \<le> x"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   516
      by (simp add: Sup_nat_def bdd_above_nat) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   517
qed
54259
71c701dc5bf9 add SUP and INF for conditionally complete lattices
hoelzl
parents: 54258
diff changeset
   518
end
54281
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   519
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   520
instantiation int :: conditionally_complete_linorder
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   521
begin
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   522
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   523
definition "Sup (X::int set) = (THE x. x \<in> X \<and> (\<forall>y\<in>X. y \<le> x))"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   524
definition "Inf (X::int set) = - (Sup (uminus ` X))"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   525
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   526
instance
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   527
proof
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   528
  { fix x :: int and X :: "int set" assume "X \<noteq> {}" "bdd_above X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   529
    then obtain x y where "X \<subseteq> {..y}" "x \<in> X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   530
      by (auto simp: bdd_above_def)
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   531
    then have *: "finite (X \<inter> {x..y})" "X \<inter> {x..y} \<noteq> {}" and "x \<le> y"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   532
      by (auto simp: subset_eq)
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   533
    have "\<exists>!x\<in>X. (\<forall>y\<in>X. y \<le> x)"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   534
    proof
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   535
      { fix z assume "z \<in> X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   536
        have "z \<le> Max (X \<inter> {x..y})"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   537
        proof cases
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   538
          assume "x \<le> z" with `z \<in> X` `X \<subseteq> {..y}` *(1) show ?thesis
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   539
            by (auto intro!: Max_ge)
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   540
        next
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   541
          assume "\<not> x \<le> z"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   542
          then have "z < x" by simp
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   543
          also have "x \<le> Max (X \<inter> {x..y})"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   544
            using `x \<in> X` *(1) `x \<le> y` by (intro Max_ge) auto
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   545
          finally show ?thesis by simp
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   546
        qed }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   547
      note le = this
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   548
      with Max_in[OF *] show ex: "Max (X \<inter> {x..y}) \<in> X \<and> (\<forall>z\<in>X. z \<le> Max (X \<inter> {x..y}))" by auto
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   549
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   550
      fix z assume *: "z \<in> X \<and> (\<forall>y\<in>X. y \<le> z)"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   551
      with le have "z \<le> Max (X \<inter> {x..y})"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   552
        by auto
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   553
      moreover have "Max (X \<inter> {x..y}) \<le> z"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   554
        using * ex by auto
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   555
      ultimately show "z = Max (X \<inter> {x..y})"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   556
        by auto
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   557
    qed
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   558
    then have "Sup X \<in> X \<and> (\<forall>y\<in>X. y \<le> Sup X)"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   559
      unfolding Sup_int_def by (rule theI') }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   560
  note Sup_int = this
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   561
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   562
  { fix x :: int and X :: "int set" assume "x \<in> X" "bdd_above X" then show "x \<le> Sup X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   563
      using Sup_int[of X] by auto }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   564
  note le_Sup = this
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   565
  { fix x :: int and X :: "int set" assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> y \<le> x" then show "Sup X \<le> x"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   566
      using Sup_int[of X] by (auto simp: bdd_above_def) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   567
  note Sup_le = this
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   568
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   569
  { fix x :: int and X :: "int set" assume "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   570
      using le_Sup[of "-x" "uminus ` X"] by (auto simp: Inf_int_def) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   571
  { fix x :: int and X :: "int set" assume "X \<noteq> {}" "\<And>y. y \<in> X \<Longrightarrow> x \<le> y" then show "x \<le> Inf X"
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   572
      using Sup_le[of "uminus ` X" "-x"] by (force simp: Inf_int_def) }
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   573
qed
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   574
end
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   575
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   576
lemma interval_cases:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   577
  fixes S :: "'a :: conditionally_complete_linorder set"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   578
  assumes ivl: "\<And>a b x. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> x \<in> S"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   579
  shows "\<exists>a b. S = {} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   580
    S = UNIV \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   581
    S = {..<b} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   582
    S = {..b} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   583
    S = {a<..} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   584
    S = {a..} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   585
    S = {a<..<b} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   586
    S = {a<..b} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   587
    S = {a..<b} \<or>
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   588
    S = {a..b}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   589
proof -
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   590
  def lower \<equiv> "{x. \<exists>s\<in>S. s \<le> x}" and upper \<equiv> "{x. \<exists>s\<in>S. x \<le> s}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   591
  with ivl have "S = lower \<inter> upper"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   592
    by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   593
  moreover 
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   594
  have "\<exists>a. upper = UNIV \<or> upper = {} \<or> upper = {.. a} \<or> upper = {..< a}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   595
  proof cases
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   596
    assume *: "bdd_above S \<and> S \<noteq> {}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   597
    from * have "upper \<subseteq> {.. Sup S}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   598
      by (auto simp: upper_def intro: cSup_upper2)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   599
    moreover from * have "{..< Sup S} \<subseteq> upper"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   600
      by (force simp add: less_cSup_iff upper_def subset_eq Ball_def)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   601
    ultimately have "upper = {.. Sup S} \<or> upper = {..< Sup S}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   602
      unfolding ivl_disj_un(2)[symmetric] by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   603
    then show ?thesis by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   604
  next
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   605
    assume "\<not> (bdd_above S \<and> S \<noteq> {})"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   606
    then have "upper = UNIV \<or> upper = {}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   607
      by (auto simp: upper_def bdd_above_def not_le dest: less_imp_le)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   608
    then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   609
      by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   610
  qed
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   611
  moreover
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   612
  have "\<exists>b. lower = UNIV \<or> lower = {} \<or> lower = {b ..} \<or> lower = {b <..}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   613
  proof cases
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   614
    assume *: "bdd_below S \<and> S \<noteq> {}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   615
    from * have "lower \<subseteq> {Inf S ..}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   616
      by (auto simp: lower_def intro: cInf_lower2)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   617
    moreover from * have "{Inf S <..} \<subseteq> lower"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   618
      by (force simp add: cInf_less_iff lower_def subset_eq Ball_def)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   619
    ultimately have "lower = {Inf S ..} \<or> lower = {Inf S <..}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   620
      unfolding ivl_disj_un(1)[symmetric] by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   621
    then show ?thesis by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   622
  next
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   623
    assume "\<not> (bdd_below S \<and> S \<noteq> {})"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   624
    then have "lower = UNIV \<or> lower = {}"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   625
      by (auto simp: lower_def bdd_below_def not_le dest: less_imp_le)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   626
    then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   627
      by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   628
  qed
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   629
  ultimately show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   630
    unfolding greaterThanAtMost_def greaterThanLessThan_def atLeastAtMost_def atLeastLessThan_def
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   631
    by (elim exE disjE) auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   632
qed
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56218
diff changeset
   633
54281
b01057e72233 int and nat are conditionally_complete_lattices
hoelzl
parents: 54263
diff changeset
   634
end