src/Pure/tactic.ML
author wenzelm
Wed Aug 02 22:26:56 2006 +0200 (2006-08-02)
changeset 20302 265b2342cf21
parent 20232 31998a8c7f25
child 21687 f689f729afab
permissions -rw-r--r--
renamed Syntax.indexname to Syntax.read_indexname;
wenzelm@10805
     1
(*  Title:      Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@10805
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
wenzelm@10805
     6
Tactics.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@11774
     9
signature BASIC_TACTIC =
wenzelm@11774
    10
sig
wenzelm@10805
    11
  val ares_tac          : thm list -> int -> tactic
wenzelm@10805
    12
  val assume_tac        : int -> tactic
wenzelm@10805
    13
  val atac      : int ->tactic
wenzelm@10817
    14
  val bimatch_from_nets_tac:
paulson@1501
    15
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    16
  val bimatch_tac       : (bool*thm)list -> int -> tactic
wenzelm@10817
    17
  val biresolution_from_nets_tac:
wenzelm@10805
    18
        ('a list -> (bool * thm) list) ->
wenzelm@10805
    19
        bool -> 'a Net.net * 'a Net.net -> int -> tactic
wenzelm@10817
    20
  val biresolve_from_nets_tac:
paulson@1501
    21
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
wenzelm@10805
    22
  val biresolve_tac     : (bool*thm)list -> int -> tactic
wenzelm@10805
    23
  val build_net : thm list -> (int*thm) Net.net
paulson@1501
    24
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    25
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
wenzelm@10817
    26
  val compose_inst_tac  : (string*string)list -> (bool*thm*int) ->
paulson@3409
    27
                          int -> tactic
wenzelm@10817
    28
  val compose_tac       : (bool * thm * int) -> int -> tactic
wenzelm@10805
    29
  val cut_facts_tac     : thm list -> int -> tactic
paulson@13650
    30
  val cut_rules_tac     : thm list -> int -> tactic
wenzelm@10817
    31
  val cut_inst_tac      : (string*string)list -> thm -> int -> tactic
oheimb@7491
    32
  val datac             : thm -> int -> int -> tactic
wenzelm@10805
    33
  val defer_tac         : int -> tactic
wenzelm@10805
    34
  val distinct_subgoals_tac     : tactic
wenzelm@10805
    35
  val dmatch_tac        : thm list -> int -> tactic
wenzelm@10805
    36
  val dresolve_tac      : thm list -> int -> tactic
wenzelm@10817
    37
  val dres_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    38
  val dtac              : thm -> int ->tactic
oheimb@7491
    39
  val eatac             : thm -> int -> int -> tactic
wenzelm@10805
    40
  val etac              : thm -> int ->tactic
wenzelm@10817
    41
  val eq_assume_tac     : int -> tactic
wenzelm@10805
    42
  val ematch_tac        : thm list -> int -> tactic
wenzelm@10805
    43
  val eresolve_tac      : thm list -> int -> tactic
wenzelm@10805
    44
  val eres_inst_tac     : (string*string)list -> thm -> int -> tactic
oheimb@7491
    45
  val fatac             : thm -> int -> int -> tactic
wenzelm@10817
    46
  val filter_prems_tac  : (term -> bool) -> int -> tactic
wenzelm@10805
    47
  val filter_thms       : (term*term->bool) -> int*term*thm list -> thm list
wenzelm@10805
    48
  val filt_resolve_tac  : thm list -> int -> int -> tactic
wenzelm@10805
    49
  val flexflex_tac      : tactic
wenzelm@10805
    50
  val fold_goals_tac    : thm list -> tactic
wenzelm@10805
    51
  val fold_rule         : thm list -> thm -> thm
wenzelm@10805
    52
  val fold_tac          : thm list -> tactic
wenzelm@10817
    53
  val forward_tac       : thm list -> int -> tactic
wenzelm@10805
    54
  val forw_inst_tac     : (string*string)list -> thm -> int -> tactic
wenzelm@10805
    55
  val ftac              : thm -> int ->tactic
wenzelm@12320
    56
  val insert_tagged_brl : ('a * (bool * thm)) *
wenzelm@12320
    57
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    58
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@12320
    59
  val delete_tagged_brl : (bool * thm) *
wenzelm@12320
    60
    (('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net) ->
wenzelm@12320
    61
      ('a * (bool * thm)) Net.net * ('a * (bool * thm)) Net.net
wenzelm@10805
    62
  val lessb             : (bool * thm) * (bool * thm) -> bool
wenzelm@10805
    63
  val lift_inst_rule    : thm * int * (string*string)list * thm -> thm
wenzelm@10805
    64
  val make_elim         : thm -> thm
wenzelm@10805
    65
  val match_from_net_tac        : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    66
  val match_tac : thm list -> int -> tactic
wenzelm@10805
    67
  val metacut_tac       : thm -> int -> tactic
wenzelm@10805
    68
  val net_bimatch_tac   : (bool*thm) list -> int -> tactic
wenzelm@10805
    69
  val net_biresolve_tac : (bool*thm) list -> int -> tactic
wenzelm@10805
    70
  val net_match_tac     : thm list -> int -> tactic
wenzelm@10805
    71
  val net_resolve_tac   : thm list -> int -> tactic
wenzelm@10805
    72
  val norm_hhf_tac      : int -> tactic
wenzelm@10805
    73
  val prune_params_tac  : tactic
wenzelm@10805
    74
  val rename_params_tac : string list -> int -> tactic
wenzelm@10805
    75
  val rename_tac        : string -> int -> tactic
wenzelm@10805
    76
  val rename_last_tac   : string -> string list -> int -> tactic
wenzelm@10805
    77
  val resolve_from_net_tac      : (int*thm) Net.net -> int -> tactic
wenzelm@10805
    78
  val resolve_tac       : thm list -> int -> tactic
wenzelm@10817
    79
  val res_inst_tac      : (string*string)list -> thm -> int -> tactic
wenzelm@10444
    80
  val rewrite_goal_tac  : thm list -> int -> tactic
wenzelm@3575
    81
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@10805
    82
  val rewrite_rule      : thm list -> thm -> thm
wenzelm@10805
    83
  val rewrite_goals_tac : thm list -> tactic
wenzelm@10805
    84
  val rewrite_tac       : thm list -> tactic
wenzelm@17968
    85
  val asm_rewrite_goal_tac: bool * bool * bool -> (simpset -> tactic) -> simpset -> int -> tactic
wenzelm@10805
    86
  val rewtac            : thm -> tactic
wenzelm@10805
    87
  val rotate_tac        : int -> int -> tactic
wenzelm@10805
    88
  val rtac              : thm -> int -> tactic
wenzelm@10805
    89
  val rule_by_tactic    : tactic -> thm -> thm
wenzelm@10805
    90
  val solve_tac         : thm list -> int -> tactic
wenzelm@10805
    91
  val subgoal_tac       : string -> int -> tactic
wenzelm@10805
    92
  val subgoals_tac      : string list -> int -> tactic
wenzelm@10805
    93
  val subgoals_of_brl   : bool * thm -> int
wenzelm@10805
    94
  val term_lift_inst_rule       :
berghofe@15797
    95
      thm * int * ((indexname * sort) * typ) list * ((indexname * typ) * term) list * thm
nipkow@1975
    96
      -> thm
oheimb@10347
    97
  val instantiate_tac   : (string * string) list -> tactic
wenzelm@10805
    98
  val thin_tac          : string -> int -> tactic
wenzelm@10805
    99
  val trace_goalno_tac  : (int -> tactic) -> int -> tactic
wenzelm@18500
   100
  val CONJUNCTS: tactic -> int -> tactic
wenzelm@18500
   101
  val PRECISE_CONJUNCTS: int -> tactic -> int -> tactic
wenzelm@11774
   102
end;
clasohm@0
   103
wenzelm@11774
   104
signature TACTIC =
wenzelm@11774
   105
sig
wenzelm@11774
   106
  include BASIC_TACTIC
wenzelm@11929
   107
  val innermost_params: int -> thm -> (string * typ) list
wenzelm@11774
   108
  val untaglist: (int * 'a) list -> 'a list
wenzelm@16809
   109
  val eq_kbrl: ('a * (bool * thm)) * ('a * (bool * thm)) -> bool
wenzelm@11774
   110
  val orderlist: (int * 'a) list -> 'a list
wenzelm@11774
   111
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@11774
   112
  val simplify: bool -> thm list -> thm -> thm
wenzelm@18471
   113
  val conjunction_tac: int -> tactic
wenzelm@18471
   114
  val precise_conjunction_tac: int -> int -> tactic
berghofe@15442
   115
  val compose_inst_tac' : (indexname * string) list -> (bool * thm * int) ->
berghofe@15442
   116
                          int -> tactic
berghofe@15442
   117
  val lift_inst_rule'   : thm * int * (indexname * string) list * thm -> thm
berghofe@15464
   118
  val eres_inst_tac'    : (indexname * string) list -> thm -> int -> tactic
berghofe@15442
   119
  val res_inst_tac'     : (indexname * string) list -> thm -> int -> tactic
berghofe@15797
   120
  val instantiate_tac'  : (indexname * string) list -> tactic
wenzelm@20115
   121
  val make_elim_preserve: thm -> thm
wenzelm@11774
   122
end;
clasohm@0
   123
wenzelm@11774
   124
structure Tactic: TACTIC =
clasohm@0
   125
struct
clasohm@0
   126
paulson@1501
   127
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
wenzelm@10817
   128
fun trace_goalno_tac tac i st =
wenzelm@4270
   129
    case Seq.pull(tac i st) of
skalberg@15531
   130
        NONE    => Seq.empty
wenzelm@12262
   131
      | seqcell => (tracing ("Subgoal " ^ string_of_int i ^ " selected");
wenzelm@10805
   132
                         Seq.make(fn()=> seqcell));
clasohm@0
   133
clasohm@0
   134
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   135
fun rule_by_tactic tac rl =
wenzelm@19925
   136
  let
wenzelm@19925
   137
    val ctxt = Variable.thm_context rl;
wenzelm@20218
   138
    val ((_, [st]), ctxt') = Variable.import true [rl] ctxt;
wenzelm@19925
   139
  in
wenzelm@19925
   140
    (case Seq.pull (tac st) of
wenzelm@19925
   141
      NONE => raise THM ("rule_by_tactic", 0, [rl])
wenzelm@19925
   142
    | SOME (st', _) => zero_var_indexes (singleton (Variable.export ctxt' ctxt) st'))
paulson@2688
   143
  end;
wenzelm@10817
   144
wenzelm@19925
   145
clasohm@0
   146
(*** Basic tactics ***)
clasohm@0
   147
clasohm@0
   148
(*** The following fail if the goal number is out of range:
clasohm@0
   149
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   150
clasohm@0
   151
(*Solve subgoal i by assumption*)
clasohm@0
   152
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   153
clasohm@0
   154
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   155
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   156
clasohm@0
   157
(** Resolution/matching tactics **)
clasohm@0
   158
clasohm@0
   159
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   160
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   161
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   162
clasohm@0
   163
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   164
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   165
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   166
clasohm@0
   167
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   168
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   169
clasohm@0
   170
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   171
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   172
clasohm@0
   173
(*Resolution with elimination rules only*)
clasohm@0
   174
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   175
clasohm@0
   176
(*Forward reasoning using destruction rules.*)
clasohm@0
   177
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   178
clasohm@0
   179
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   180
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   181
clasohm@0
   182
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   183
val atac    =   assume_tac;
oheimb@7491
   184
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   185
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   186
fun etac rl = eresolve_tac [rl];
oheimb@7491
   187
fun ftac rl =  forward_tac [rl];
oheimb@7491
   188
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   189
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   190
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   191
clasohm@0
   192
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   193
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   194
wenzelm@5263
   195
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   196
clasohm@0
   197
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   198
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   199
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   200
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   201
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   202
clasohm@0
   203
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   204
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   205
wenzelm@19056
   206
(*Remove duplicate subgoals.*)
wenzelm@10817
   207
fun distinct_subgoals_tac state =
wenzelm@19056
   208
  let
wenzelm@19056
   209
    val perm_tac = PRIMITIVE oo Thm.permute_prems;
paulson@3409
   210
wenzelm@19056
   211
    fun distinct_tac (i, k) =
wenzelm@19056
   212
      perm_tac 0 (i - 1) THEN
wenzelm@19056
   213
      perm_tac 1 (k - 1) THEN
wenzelm@19056
   214
      DETERM (PRIMSEQ (fn st =>
wenzelm@19056
   215
        Thm.compose_no_flatten false (st, 0) 1
wenzelm@19056
   216
          (Drule.incr_indexes st Drule.distinct_prems_rl))) THEN
wenzelm@19056
   217
      perm_tac 1 (1 - k) THEN
wenzelm@19056
   218
      perm_tac 0 (1 - i);
wenzelm@19056
   219
wenzelm@19056
   220
    fun distinct_subgoal_tac i st =
wenzelm@19056
   221
      (case Library.drop (i - 1, Thm.prems_of st) of
wenzelm@19056
   222
        [] => no_tac st
wenzelm@19056
   223
      | A :: Bs =>
wenzelm@19056
   224
          st |> EVERY (fold (fn (B, k) =>
wenzelm@19056
   225
            if A aconv B then cons (distinct_tac (i, k)) else I) (Bs ~~ (1 upto length Bs)) []));
wenzelm@19056
   226
wenzelm@19056
   227
    val goals = Thm.prems_of state;
wenzelm@19056
   228
    val dups = distinct (eq_fst (op aconv)) (goals ~~ (1 upto length goals));
wenzelm@19056
   229
  in EVERY (rev (map (distinct_subgoal_tac o snd) dups)) state end;
paulson@3409
   230
wenzelm@11929
   231
(*Determine print names of goal parameters (reversed)*)
wenzelm@11929
   232
fun innermost_params i st =
wenzelm@11929
   233
  let val (_, _, Bi, _) = dest_state (st, i)
wenzelm@11929
   234
  in rename_wrt_term Bi (Logic.strip_params Bi) end;
wenzelm@11929
   235
paulson@15453
   236
(*params of subgoal i as they are printed*)
paulson@19532
   237
fun params_of_state i st = rev (innermost_params i st);
wenzelm@16425
   238
paulson@15453
   239
(*read instantiations with respect to subgoal i of proof state st*)
paulson@15453
   240
fun read_insts_in_state (st, i, sinsts, rule) =
wenzelm@16425
   241
  let val thy = Thm.theory_of_thm st
paulson@19532
   242
      and params = params_of_state i st
wenzelm@16425
   243
      and rts = types_sorts rule and (types,sorts) = types_sorts st
haftmann@17271
   244
      fun types'(a, ~1) = (case AList.lookup (op =) params a of NONE => types (a, ~1) | sm => sm)
wenzelm@16425
   245
        | types' ixn = types ixn;
wenzelm@16425
   246
      val used = Drule.add_used rule (Drule.add_used st []);
wenzelm@16425
   247
  in read_insts thy rts (types',sorts) used sinsts end;
paulson@15453
   248
clasohm@0
   249
(*Lift and instantiate a rule wrt the given state and subgoal number *)
berghofe@15442
   250
fun lift_inst_rule' (st, i, sinsts, rule) =
paulson@15453
   251
let val (Tinsts,insts) = read_insts_in_state (st, i, sinsts, rule)
paulson@15453
   252
    and {maxidx,...} = rep_thm st
paulson@19532
   253
    and params = params_of_state i st
clasohm@0
   254
    val paramTs = map #2 params
clasohm@0
   255
    and inc = maxidx+1
wenzelm@16876
   256
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> Logic.incr_tvar inc T)
clasohm@0
   257
      | liftvar t = raise TERM("Variable expected", [t]);
wenzelm@10817
   258
    fun liftterm t = list_abs_free (params,
wenzelm@10805
   259
                                    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   260
    (*Lifts instantiation pair over params*)
lcp@230
   261
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
wenzelm@16876
   262
    val lifttvar = pairself (ctyp_fun (Logic.incr_tvar inc))
paulson@8129
   263
in Drule.instantiate (map lifttvar Tinsts, map liftpair insts)
wenzelm@18145
   264
                     (Thm.lift_rule (Thm.cprem_of st i) rule)
clasohm@0
   265
end;
clasohm@0
   266
berghofe@15442
   267
fun lift_inst_rule (st, i, sinsts, rule) = lift_inst_rule'
wenzelm@20302
   268
  (st, i, map (apfst Syntax.read_indexname) sinsts, rule);
berghofe@15442
   269
nipkow@3984
   270
(*
nipkow@3984
   271
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   272
Bounds referring to parameters of the subgoal.
nipkow@3984
   273
nipkow@3984
   274
insts: [...,(vj,tj),...]
nipkow@3984
   275
nipkow@3984
   276
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   277
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   278
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   279
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   280
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   281
nipkow@3984
   282
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   283
    i.e. Tinsts is not applied to insts.
nipkow@3984
   284
*)
nipkow@1975
   285
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
wenzelm@16425
   286
let val {maxidx,thy,...} = rep_thm st
paulson@19532
   287
    val paramTs = map #2 (params_of_state i st)
nipkow@1966
   288
    and inc = maxidx+1
wenzelm@16876
   289
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> Logic.incr_tvar inc T)
nipkow@1975
   290
    (*lift only Var, not term, which must be lifted already*)
wenzelm@16425
   291
    fun liftpair (v,t) = (cterm_of thy (liftvar v), cterm_of thy t)
berghofe@15797
   292
    fun liftTpair (((a, i), S), T) =
wenzelm@16425
   293
      (ctyp_of thy (TVar ((a, i + inc), S)),
wenzelm@16876
   294
       ctyp_of thy (Logic.incr_tvar inc T))
paulson@8129
   295
in Drule.instantiate (map liftTpair Tinsts, map liftpair insts)
wenzelm@18145
   296
                     (Thm.lift_rule (Thm.cprem_of st i) rule)
nipkow@1966
   297
end;
clasohm@0
   298
clasohm@0
   299
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   300
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   301
clasohm@0
   302
(*compose version: arguments are as for bicompose.*)
berghofe@15442
   303
fun gen_compose_inst_tac instf sinsts (bires_flg, rule, nsubgoal) i st =
paulson@8977
   304
  if i > nprems_of st then no_tac st
paulson@8977
   305
  else st |>
berghofe@15442
   306
    (compose_tac (bires_flg, instf (st, i, sinsts, rule), nsubgoal) i
wenzelm@12262
   307
     handle TERM (msg,_)   => (warning msg;  no_tac)
wenzelm@12262
   308
          | THM  (msg,_,_) => (warning msg;  no_tac));
clasohm@0
   309
berghofe@15442
   310
val compose_inst_tac = gen_compose_inst_tac lift_inst_rule;
berghofe@15442
   311
val compose_inst_tac' = gen_compose_inst_tac lift_inst_rule';
berghofe@15442
   312
lcp@761
   313
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   314
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   315
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   316
paulson@2029
   317
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   318
  were introduced during type inference and still remain in the term at the
nipkow@952
   319
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   320
  goals.
lcp@761
   321
*)
clasohm@0
   322
fun res_inst_tac sinsts rule i =
clasohm@0
   323
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   324
berghofe@15442
   325
fun res_inst_tac' sinsts rule i =
berghofe@15442
   326
    compose_inst_tac' sinsts (false, rule, nprems_of rule) i;
berghofe@15442
   327
paulson@1501
   328
(*eresolve elimination version*)
clasohm@0
   329
fun eres_inst_tac sinsts rule i =
clasohm@0
   330
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   331
berghofe@15464
   332
fun eres_inst_tac' sinsts rule i =
berghofe@15464
   333
    compose_inst_tac' sinsts (true, rule, nprems_of rule) i;
berghofe@15464
   334
lcp@270
   335
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   336
  increment revcut_rl instead.*)
wenzelm@10817
   337
fun make_elim_preserve rl =
lcp@270
   338
  let val {maxidx,...} = rep_thm rl
wenzelm@16425
   339
      fun cvar ixn = cterm_of ProtoPure.thy (Var(ixn,propT));
wenzelm@10817
   340
      val revcut_rl' =
wenzelm@10805
   341
          instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
wenzelm@10805
   342
                             (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   343
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   344
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   345
  in  th  end
clasohm@0
   346
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   347
lcp@270
   348
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   349
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   350
lcp@270
   351
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   352
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   353
lcp@270
   354
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   355
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   356
oheimb@10347
   357
(*instantiate variables in the whole state*)
oheimb@10347
   358
val instantiate_tac = PRIMITIVE o read_instantiate;
oheimb@10347
   359
berghofe@15797
   360
val instantiate_tac' = PRIMITIVE o Drule.read_instantiate';
berghofe@15797
   361
paulson@1951
   362
(*Deletion of an assumption*)
paulson@1951
   363
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   364
lcp@270
   365
(*** Applications of cut_rl ***)
clasohm@0
   366
clasohm@0
   367
(*Used by metacut_tac*)
clasohm@0
   368
fun bires_cut_tac arg i =
clasohm@1460
   369
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   370
clasohm@0
   371
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   372
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   373
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   374
paulson@13650
   375
(*"Cut" a list of rules into the goal.  Their premises will become new
paulson@13650
   376
  subgoals.*)
paulson@13650
   377
fun cut_rules_tac ths i = EVERY (map (fn th => metacut_tac th i) ths);
paulson@13650
   378
paulson@13650
   379
(*As above, but inserts only facts (unconditional theorems);
paulson@13650
   380
  generates no additional subgoals. *)
wenzelm@20232
   381
fun cut_facts_tac ths = cut_rules_tac (filter Thm.no_prems ths);
clasohm@0
   382
clasohm@0
   383
(*Introduce the given proposition as a lemma and subgoal*)
wenzelm@12847
   384
fun subgoal_tac sprop =
wenzelm@12847
   385
  DETERM o res_inst_tac [("psi", sprop)] cut_rl THEN' SUBGOAL (fn (prop, _) =>
wenzelm@12847
   386
    let val concl' = Logic.strip_assums_concl prop in
paulson@4178
   387
      if null (term_tvars concl') then ()
paulson@4178
   388
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@12847
   389
      all_tac
wenzelm@12847
   390
  end);
clasohm@0
   391
lcp@439
   392
(*Introduce a list of lemmas and subgoals*)
lcp@439
   393
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   394
clasohm@0
   395
clasohm@0
   396
(**** Indexing and filtering of theorems ****)
clasohm@0
   397
clasohm@0
   398
(*Returns the list of potentially resolvable theorems for the goal "prem",
wenzelm@10805
   399
        using the predicate  could(subgoal,concl).
clasohm@0
   400
  Resulting list is no longer than "limit"*)
clasohm@0
   401
fun filter_thms could (limit, prem, ths) =
clasohm@0
   402
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   403
      fun filtr (limit, []) = []
wenzelm@10805
   404
        | filtr (limit, th::ths) =
wenzelm@10805
   405
            if limit=0 then  []
wenzelm@10805
   406
            else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
wenzelm@10805
   407
            else filtr(limit,ths)
clasohm@0
   408
  in  filtr(limit,ths)  end;
clasohm@0
   409
clasohm@0
   410
clasohm@0
   411
(*** biresolution and resolution using nets ***)
clasohm@0
   412
clasohm@0
   413
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   414
clasohm@0
   415
(*insert tags*)
clasohm@0
   416
fun taglist k [] = []
clasohm@0
   417
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   418
clasohm@0
   419
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   420
fun untaglist [] = []
clasohm@0
   421
  | untaglist [(k:int,x)] = [x]
clasohm@0
   422
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   423
      if k=k' then untaglist rest
clasohm@0
   424
      else    x :: untaglist rest;
clasohm@0
   425
clasohm@0
   426
(*return list elements in original order*)
wenzelm@10817
   427
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls);
clasohm@0
   428
clasohm@0
   429
(*insert one tagged brl into the pair of nets*)
wenzelm@12320
   430
fun insert_tagged_brl (kbrl as (k, (eres, th)), (inet, enet)) =
wenzelm@12320
   431
  if eres then
wenzelm@12320
   432
    (case try Thm.major_prem_of th of
wenzelm@16809
   433
      SOME prem => (inet, Net.insert_term (K false) (prem, kbrl) enet)
skalberg@15531
   434
    | NONE => error "insert_tagged_brl: elimination rule with no premises")
wenzelm@16809
   435
  else (Net.insert_term (K false) (concl_of th, kbrl) inet, enet);
clasohm@0
   436
clasohm@0
   437
(*build a pair of nets for biresolution*)
wenzelm@10817
   438
fun build_netpair netpair brls =
skalberg@15574
   439
    foldr insert_tagged_brl netpair (taglist 1 brls);
clasohm@0
   440
wenzelm@12320
   441
(*delete one kbrl from the pair of nets*)
wenzelm@16809
   442
fun eq_kbrl ((_, (_, th)), (_, (_, th'))) = Drule.eq_thm_prop (th, th')
wenzelm@16809
   443
wenzelm@12320
   444
fun delete_tagged_brl (brl as (eres, th), (inet, enet)) =
paulson@13925
   445
  (if eres then
wenzelm@12320
   446
    (case try Thm.major_prem_of th of
wenzelm@16809
   447
      SOME prem => (inet, Net.delete_term eq_kbrl (prem, ((), brl)) enet)
skalberg@15531
   448
    | NONE => (inet, enet))  (*no major premise: ignore*)
wenzelm@16809
   449
  else (Net.delete_term eq_kbrl (Thm.concl_of th, ((), brl)) inet, enet))
paulson@13925
   450
  handle Net.DELETE => (inet,enet);
paulson@1801
   451
paulson@1801
   452
wenzelm@10817
   453
(*biresolution using a pair of nets rather than rules.
paulson@3706
   454
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   455
    boolean "match" indicates matching or unification.*)
paulson@3706
   456
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   457
  SUBGOAL
clasohm@0
   458
    (fn (prem,i) =>
clasohm@0
   459
      let val hyps = Logic.strip_assums_hyp prem
wenzelm@10817
   460
          and concl = Logic.strip_assums_concl prem
wenzelm@19482
   461
          val kbrls = Net.unify_term inet concl @ maps (Net.unify_term enet) hyps
paulson@3706
   462
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   463
paulson@3706
   464
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   465
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   466
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   467
clasohm@0
   468
(*fast versions using nets internally*)
lcp@670
   469
val net_biresolve_tac =
lcp@670
   470
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   471
lcp@670
   472
val net_bimatch_tac =
lcp@670
   473
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   474
clasohm@0
   475
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   476
clasohm@0
   477
(*insert one tagged rl into the net*)
clasohm@0
   478
fun insert_krl (krl as (k,th), net) =
wenzelm@16809
   479
    Net.insert_term (K false) (concl_of th, krl) net;
clasohm@0
   480
clasohm@0
   481
(*build a net of rules for resolution*)
wenzelm@10817
   482
fun build_net rls =
skalberg@15574
   483
    foldr insert_krl Net.empty (taglist 1 rls);
clasohm@0
   484
clasohm@0
   485
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   486
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   487
  SUBGOAL
clasohm@0
   488
    (fn (prem,i) =>
clasohm@0
   489
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
wenzelm@10817
   490
      in
wenzelm@10817
   491
         if pred krls
clasohm@0
   492
         then PRIMSEQ
wenzelm@10805
   493
                (biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   494
         else no_tac
clasohm@0
   495
      end);
clasohm@0
   496
clasohm@0
   497
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   498
   which means more than maxr rules are unifiable.      *)
wenzelm@10817
   499
fun filt_resolve_tac rules maxr =
clasohm@0
   500
    let fun pred krls = length krls <= maxr
clasohm@0
   501
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   502
clasohm@0
   503
(*versions taking pre-built nets*)
clasohm@0
   504
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   505
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   506
clasohm@0
   507
(*fast versions using nets internally*)
clasohm@0
   508
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   509
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   510
clasohm@0
   511
clasohm@0
   512
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   513
clasohm@0
   514
(*The number of new subgoals produced by the brule*)
lcp@1077
   515
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   516
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   517
clasohm@0
   518
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   519
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   520
clasohm@0
   521
clasohm@0
   522
(*** Meta-Rewriting Tactics ***)
clasohm@0
   523
wenzelm@3575
   524
val simple_prover =
wenzelm@15021
   525
  SINGLE o (fn ss => ALLGOALS (resolve_tac (MetaSimplifier.prems_of_ss ss)));
wenzelm@3575
   526
wenzelm@11768
   527
val rewrite = MetaSimplifier.rewrite_aux simple_prover;
wenzelm@11768
   528
val simplify = MetaSimplifier.simplify_aux simple_prover;
wenzelm@11768
   529
val rewrite_rule = simplify true;
berghofe@10415
   530
val rewrite_goals_rule = MetaSimplifier.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   531
wenzelm@17968
   532
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
wenzelm@17968
   533
fun asm_rewrite_goal_tac mode prover_tac ss =
wenzelm@17968
   534
  SELECT_GOAL
wenzelm@17968
   535
    (PRIMITIVE (MetaSimplifier.rewrite_goal_rule mode (SINGLE o prover_tac) ss 1));
wenzelm@17968
   536
wenzelm@10444
   537
fun rewrite_goal_tac rews =
wenzelm@17892
   538
  let val ss = MetaSimplifier.empty_ss addsimps rews in
wenzelm@17968
   539
    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
wenzelm@17892
   540
      (MetaSimplifier.theory_context (Thm.theory_of_thm st) ss) i st
wenzelm@17892
   541
  end;
wenzelm@10444
   542
lcp@69
   543
(*Rewrite throughout proof state. *)
lcp@69
   544
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   545
clasohm@0
   546
(*Rewrite subgoals only, not main goal. *)
lcp@69
   547
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@1460
   548
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   549
wenzelm@12782
   550
val norm_hhf_tac =
wenzelm@12782
   551
  rtac Drule.asm_rl  (*cheap approximation -- thanks to builtin Logic.flatten_params*)
wenzelm@12782
   552
  THEN' SUBGOAL (fn (t, i) =>
wenzelm@12801
   553
    if Drule.is_norm_hhf t then all_tac
wenzelm@12782
   554
    else rewrite_goal_tac [Drule.norm_hhf_eq] i);
wenzelm@10805
   555
clasohm@0
   556
paulson@1501
   557
(*** for folding definitions, handling critical pairs ***)
lcp@69
   558
lcp@69
   559
(*The depth of nesting in a term*)
lcp@69
   560
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   561
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   562
  | term_depth _ = 0;
lcp@69
   563
wenzelm@12801
   564
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
lcp@69
   565
lcp@69
   566
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   567
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   568
fun sort_lhs_depths defs =
haftmann@17496
   569
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@19056
   570
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
haftmann@17496
   571
  in map (AList.find (op =) keylist) keys end;
lcp@69
   572
wenzelm@7596
   573
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   574
wenzelm@19473
   575
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@7596
   576
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   577
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   578
lcp@69
   579
lcp@69
   580
(*** Renaming of parameters in a subgoal
lcp@69
   581
     Names may contain letters, digits or primes and must be
lcp@69
   582
     separated by blanks ***)
clasohm@0
   583
wenzelm@9535
   584
fun rename_params_tac xs i =
wenzelm@14673
   585
  case Library.find_first (not o Syntax.is_identifier) xs of
skalberg@15531
   586
      SOME x => error ("Not an identifier: " ^ x)
wenzelm@16425
   587
    | NONE =>
paulson@13559
   588
       (if !Logic.auto_rename
wenzelm@16425
   589
         then (warning "Resetting Logic.auto_rename";
wenzelm@16425
   590
             Logic.auto_rename := false)
wenzelm@16425
   591
        else (); PRIMITIVE (rename_params_rule (xs, i)));
wenzelm@9535
   592
wenzelm@10817
   593
fun rename_tac str i =
wenzelm@10817
   594
  let val cs = Symbol.explode str in
wenzelm@4693
   595
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@9535
   596
      [] => rename_params_tac (scanwords Symbol.is_letdig cs) i
clasohm@0
   597
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   598
  end;
clasohm@0
   599
paulson@1501
   600
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   601
  provided the string a, which represents a term, is an identifier. *)
wenzelm@10817
   602
fun rename_last_tac a sufs i =
clasohm@0
   603
  let val names = map (curry op^ a) sufs
clasohm@0
   604
  in  if Syntax.is_identifier a
clasohm@0
   605
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   606
      else all_tac
clasohm@0
   607
  end;
clasohm@0
   608
paulson@2043
   609
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   610
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   611
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   612
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   613
paulson@1501
   614
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   615
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   616
fun rotate_tac 0 i = all_tac
paulson@2672
   617
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   618
paulson@7248
   619
(*Rotates the given subgoal to be the last.*)
paulson@7248
   620
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   621
nipkow@5974
   622
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   623
fun filter_prems_tac p =
skalberg@15531
   624
  let fun Then NONE tac = SOME tac
skalberg@15531
   625
        | Then (SOME tac) tac' = SOME(tac THEN' tac');
wenzelm@19473
   626
      fun thins H (tac,n) =
nipkow@5974
   627
        if p H then (tac,n+1)
nipkow@5974
   628
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   629
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   630
       let val Hs = Logic.strip_assums_hyp subg
wenzelm@19473
   631
       in case fst(fold thins Hs (NONE,0)) of
skalberg@15531
   632
            NONE => no_tac | SOME tac => tac n
nipkow@5974
   633
       end)
nipkow@5974
   634
  end;
nipkow@5974
   635
wenzelm@11961
   636
wenzelm@18471
   637
(* meta-level conjunction *)
wenzelm@18471
   638
wenzelm@18471
   639
val conj_tac = SUBGOAL (fn (goal, i) =>
wenzelm@19423
   640
  if can Logic.dest_conjunction goal then rtac Conjunction.conjunctionI i
wenzelm@18471
   641
  else no_tac);
wenzelm@18471
   642
wenzelm@18471
   643
val conjunction_tac = TRY o REPEAT_ALL_NEW conj_tac;
wenzelm@16425
   644
wenzelm@18471
   645
val precise_conjunction_tac =
wenzelm@18471
   646
  let
wenzelm@18471
   647
    fun tac 0 i = eq_assume_tac i
wenzelm@18471
   648
      | tac 1 i = SUBGOAL (K all_tac) i
wenzelm@18471
   649
      | tac n i = conj_tac i THEN TRY (fn st => tac (n - 1) (i + 1) st);
wenzelm@18471
   650
  in TRY oo tac end;
wenzelm@12139
   651
wenzelm@18500
   652
fun CONJUNCTS tac =
wenzelm@18500
   653
  SELECT_GOAL (conjunction_tac 1
wenzelm@18500
   654
    THEN tac
wenzelm@19423
   655
    THEN PRIMITIVE (Conjunction.uncurry ~1));
wenzelm@18500
   656
wenzelm@18500
   657
fun PRECISE_CONJUNCTS n tac =
wenzelm@18471
   658
  SELECT_GOAL (precise_conjunction_tac n 1
wenzelm@18209
   659
    THEN tac
wenzelm@19423
   660
    THEN PRIMITIVE (Conjunction.uncurry ~1));
wenzelm@18209
   661
clasohm@0
   662
end;
paulson@1501
   663
wenzelm@11774
   664
structure BasicTactic: BASIC_TACTIC = Tactic;
wenzelm@11774
   665
open BasicTactic;